
 Chapter 4 Interaction Models Use

Cases, Actions, and

Collaborations

Chapters 2 and 3 have described how to model the behaviors of an object by specifying
operations in terms of attributes. However, the most interesting aspect of any design lies in
the interactions among the objects: the way that the net behavior resulting from their col-
laborations realizes some higher-level function when they are configured together in a par-
ticular way.

Use cases, actions, and collaborations abstract the interactions among a group of
objects above the level of an individual OOP message send. These interaction models let
you separate abstract multiparty behaviors, joint or localized responsibilities, and actual
interfaces and interaction protocols.

Section 4.1 provides an overview of the design of object collaborations. Section 4.2
begins with examples of object interactions to show that many variations in interaction
protocols achieve the same net effect and so motivate the need for abstract actions. Section
4.3 introduces use cases and relates them to actions and refinement. Section 4.4 explains
how actions and effects are related to abstract actions. Section 4.5 describes concurrency
between actions and explains how to specify these constraints.

Collaborations—sets of related actions—are introduced in Section 4.6. Section 4.7
describes how to use collaborations to describe either the encapsulated internal design of a
type specification or an “open” design pattern. The separation of actions internal to a col-
laboration from those that are external to a collaboration forms the basis for effective col-
laboration models and is the topic of Section 4.8.

4.1 Designing Object Collaborations

The big difference between object-oriented design (OOD) and the procedural style is that
with OOD your program must not only work as a sequence of statements but must also be
well decoupled so that it can easily be pulled apart, reconfigured, and maintained. You
153

154 PART II MODELING WITH OBJECTS
must make an extra set of decisions about how to distribute the program’s functionality
among many small operational units with their own states. In return—if you do it well—
you get the benefits of flexibility.

There are three big questions in object-oriented design.

• What should the system do? This is the focus of type specification in Chapter 3. You’ll
find guidance on putting it together in Chapter 15.

• What objects should be chosen? The first draft is the static model we used for the type

specification, although it is modified by design patterns to improve decoupling.

• Which object should do what, and how should the objects interact? The most important
criterion is to meet the specification. In addition, our goal is to separate different con-
cerns into different objects while balancing the needs of decoupling with performance.

The art of designing the collaborations is so important that many experts advocate mak-
ing collaborations the primary focus of object-oriented design—with, of course, a reason-
able type specification first. In Catalysis, collaborations, like types, are therefore first-class
units of design. A collaboration is a design for the way objects interact with one another to
achieve a mutual goal. A type represents a specification of the behavior seen at an interface
to an object. By contrast, a collaboration represents a design of the way a group of objects
interact to meet a type specification.

There are several situations in which collaborations should be used.

• When you’re designing what goes on inside a software component.

• When you’re describing how users (or external machines or software) interact with a

component you’re interested in. It is useful to understand how a component is to be

used before constructing it.

• When you’re decribing how real world objects in a business organization (or a hard-
ware design) interact with one another. This description is typically used to help

explain the business in which a system is to be installed or updated.

4.2 Actions (Use Cases) Abstract Complex Interactions

We’ve already said that it’s often useful to talk about what is to be achieved in some part
of a complex design before you go into how it is to be achieved. Type specifications are
about hiding the “how” inside individual objects and stating only the end result of invok-
ing a particular operation.

Abstract actions do the same for interactions between groups of objects (as opposed to
inside them). We know that we want to achieve the transfer of information and that it might
involve the participants having a complex dialog, but we may wish to leave the details aside
for a separate piece of work. The interacting participants might be objects inside a program,
or people, or people and computers.

For example, how does the sale of a product from a wholesaler to a retailer work? Here
are three different possibilities, as illustrated in Figure 4.1.

Chapter 4 Interaction Models: Use Cases, Actions, and Collaborations 155
a. The retailer first queries the price for a product and then requests a sale while provid-
ing payment; the wholesaler then delivers the items.

b. The retailer requests the sale, and the wholesaler calls back requesting payment of the
appropriate amount. When the payment is provided, the wholesaler delivers the items.

c. The wholesaler triggers the retailer to buy the product, perhaps by monitoring the
retailer’s inventory systems. The retailer returns a payment, and the wholesaler then
delivers the items.

But at some level of analysis or design, I don’t want to bother with which of these proto-
cols is used or whether all or any of them is available. What they have in common is the
same net effect of transferring a quantity of items and money based on the wholesaler’s
price. They differ in who initiates which operation and the protocol of interactions.

In Catalysis, we can describe the whole dialog as a single interaction (Figure 4.2). On any
sequence chart, a series of horizontal bars can be collapsed to a single bar, representing
their combined effect. The horizontal bars connect objects that influence or are influenced
by the outcome: there may be any number of them. If all the possible refinements have the
same initiator, it can be marked with a shaded oval (Figure 4.2b).

Figure 4.1 Three protocols for a sale of items.

Figure 4.2 A sale as one action, without the details of the protocols.

rtlr:

p := price(prod,q)

order (prod,p)

delivery

(a) Sale by price (b) Sale by quantity (c) Sale by supply

whslr: rtlr:

order (prod, q)

payment

reqPay (p)

delivery

whslr: rtlr:

stockLow (prod)

accept (prod, q)

delivery (items)

payment

whslr:

Request

Completion

rtlr:

sale(prod, q)

(a) Initiator not determined

whslr: rtlr:

sale(prod, q)

(b) Initiator determined

whslr:

156 PART II MODELING WITH OBJECTS
4.2.1 Action Types and Refinements
Each horizontal arrow or bar represents an occurrence of an action. Just as object instances
belong to types that group them according to behavior, so action occurrences belong to
action types, to which descriptions of the action can be attached. An action type is shown
as an ellipse associated with the types of object that can participate in it (see Figure 4.3).
Participants are those objects whose states can be changed by, or whose states can affect

the outcome of, an action; there may be any number of them.

The value of an action such as sale is that it represents all protocols that achieve the
same postcondition. We can show its relationship to different possible protocols, as in
Figure 4.4. The subtyping symbol is used to show that there are different variants of sale,
all of them sharing and extending its description. The diamond aggregation symbol
decomposes an action into more-detailed constituents. An aggregation doesn’t show
exactly how the smaller actions make up the larger one. They might be a sequence or
might occur repetitively or concurrently; that must be documented separately for each
aggregation—for example, by using sequence diagrams such as that shown in Figure 4.1.

The most-abstract actions represent only the effect of an interaction. The more-detailed
ones are directional, stating who intiates the request and who processes it. The most-con-
crete actions are object-oriented messages.

Figure 4.3 An action type with participants.

Figure 4.4 Different kinds of sale and and their constituent actions.

Retailer Wholesaler

Post: retailer gets goods, loses money;
wholesaler loses goods, gets cash.

sale

delivery reqPay

sale

payment

saleBySupply

accept

order

price

saleByQtysaleByPrice

Chapter 4 Interaction Models: Use Cases, Actions, and Collaborations 157
4.2.2 Preview: Documenting a Refinement
Chapter 6, Abstraction, Refinement, and Testing, discusses refinement in detail, but we
include a short discussion here to show how to relate abstraction and realization to each
other in the context of actions.

One of the finer-grained actions in a sale is the delivery of the product to the retailer.
Consider a simple retailer warehouse object, WHA. One of its operations is re_stock, by
which one of the products in the warehouse is restocked by some quantity. One abstract
description of this action uses a simple type model:

action WHA::re_stock (p: Product, q: Quantity)
post: p.stock += q

One realization of this warehouse, WHB, provides a sliding door that can be moved to a
particular product and then opened; then items are added to that product shelf one at a time
before the door is closed. The actions at this level of realization need a slightly richer type
model with a selected_product attribute:

action WHB::open (p: Product)
post: selected_product = p

action WHB::insert ()
post: selected_product.count += 1

action WHB::close ()
post: selected_product = null

It is clear that a certain sequence of these detailed actions constitutes a valid re_stock
action. Thus the following sequence constitutes an abstract action: re_stock (p, n).

open (p); insert1(); insert2(); ... insertn(); close()

The refinement relation between the two levels of descrip-
tion documents this mapping. The state chart shows how the
parameters and state changes in the detailed action sequence
translate to the abstract action and its parameters. In this exam-
ple we use a counter attribute to define this mapping; it is an
attribute of a specification type representing a restocking in
progress at the more detailed level (Pattern 14.13, Action Reifi-
cation).

4.2.3 Joint Actions (Use Cases)
In Catalysis we believe in the value of separating the various decisions that must be made
during a design. We therefore require two things: a way to describe the overall effect of an
interaction without any attribution of who does what and a way to document who does
what after we have made that decision.

A joint action represents a change in the state of some number of participant objects
without stating how it happens and without yet attributing the responsibility for it to any

insert()

/ n + = 1

close()

/re_stock (p,n)

open_door (p)
/ n = 0

WHA

WHB

158 PART II MODELING WITH OBJECTS
one of the participants. We can write its postcondition more or less formally in terms of
the models of the participants as shown in Figure 4.5.

4.2.4 Localized Actions
To assign responsibility for the execution of an
action, use a localized action. Draw the action
attached to the type or (more conventionally) list it
in the bottom section of the type box.

In accompanying text, a localized action is prefixed with its type using the context
operator:

action Wholesaler :: sell (retailer : Retailer, item : Item, out price : $)
pre catalog.stock->includes(item) -- this item was part of our stock
post price = item.product.price -- price returned to caller

and cash = cash@pre + price

and stock = stock@pre – item

Figure 4.5 A joint action, or use case.

action sale (buyer:Retailer, vendor:Wholesaler, item: Item)
post: let price = item.product.price in

		 -- items were in stock, retailer must be registered with w
			 vendor.products.stock@pre–> includes (item)
	 and	 vendor.customers–> includes (buyer)
		 -- and retailer must have cash to pay for that quantity of items
	 and	 buyer.cash@pre >= price

		 -- cash and item have been transferred
and	 buyer.owns = buyer.owns@pre + item

and	 buyer.cash = buyer.cash@pre – price

and	 vendor.catalog.stock = vendor.catalog.stock@pre – item

and	 vendor.cash = vendor.cash@pre + price
-- can abbreviate to buyer.owns += item and buyer.cash –= price etc

 Retailer

cash: $
 Product

price: $

 Wholesaler

cash: $
buyer

owns stock

catalog *

customers *

Use case =
joint action

0..1

0..1
* *

*

vendor
sale (item)

Item

Equivalent

Item
 Product

price: $

 Wholesaler

cash: $

sell (....)

stock

* catalog

*sell

Chapter 4 Interaction Models: Use Cases, Actions, and Collaborations 159
In the specification of a localized action, self is defined and refers to the receiving object. We
do not know who the invoker is. Return values (e.g., price) can be defined.

4.2.5 Joint versus Localized Actions
Let’s look at some differences between joint actions and localized actions. First, localized
actions are invoked. A localized action represents an interaction in which the receiver (the
object taking responsibility) is requested to achieve the postcondition. It should do so if
the precondition is met.

The message (or operation) in an object-oriented programming language is one realiza-
tion of a localized action. Localized actions are a bit more general, encompassing any way
in which an object can be stimulated to do something.1 For example, in specifying an
application program such as a drawing editor, we can think of the editor as a single object;
the user operations, such as cut, paste, and move shape, are actions localized on the editor.
They are abstract in that each one is invoked using a sequence of smaller actions (key-
strokes, mouse moves, and clicks); there may be no single message to a particular object
within the editor corresponding to, say, move shape.

Joint actions represent possibilities A joint action represents a specification of some-
thing that may occur. It can be referred to in other specifications (e.g., “To achieve
restocking, one or more sales must occur”) but can’t be invoked directly from the program
code. To do that, you must have an implementation (such as one of the sequences in
Figure 4.1), which will tell you one of the ways to start.

Localized actions provide preconditions. When a localized action is invoked, if the pre-
condition is true we are assured that the postcondition will be achieved. Joint actions rep-
resent descriptions of history: Looking at the history of the world, wherever this and that
has happened, we call that a sale. Wherever something else happened that started the same
way but ended up differently, we call it something else, such as a theft.

(We sometimes find it convenient to write “preconditions” on joint actions, but they are
really only clauses that should be wrapped up in a big (...)@pre and conjoined with the rest
of the postcondition.)

4.2.6 Action Parameters
The parameters of an action represent things that might be different from one occurrence
to another. In any sale, the selling and buying parties may be different, and the item being
sold is different; they are all parameters. The price also changes, so we could make it a
parameter; however, we might assert that the price exchanged in our sales is always the
price in the vendor’s catalog. Therefore, although we could include it as a parameter, it
would be redundant. Notice how different action parameters are from programming-lan-
guage parameters: we are specifying the information content of the interaction and not its
implementation.2

1. A directed joint action encompasses any way one object may stimulate another to do something.

160 PART II MODELING WITH OBJECTS
In a joint action, some of the parameters may be distinguished as participants and drawn
linked to the use case pictorially, whereas other parameters are written in text style. For exam-
ple, in Figure 4.5, buyer and vendor are participants, whereas item is a parameter. In business
analysis, the difference is a matter of convenience and is analogous to the equivalence of the
associations and attributes of object types. In a software design, the participants can be used to
represent objects that we know will definitely exist in the final code and that will, between
them, take responsibility for executing the action. The list of parameters, on the other hand,
represents information transferred between them whose implementation is yet to be deter-
mined.

In text, the list of participants can be written in front of the action name as partially
localized context:

action (buyer:Retailer, vendor:Wholesaler) :: sale (item: Item)
post: let price = item.product.price in

 vendor.customers → includes (buyer)

4.2.7 From Joint to Localized Actions
A joint action is interesting because its effect says something important about all partici-
pants. Although some joint actions, such as the one in Figure 4.2, do not designate any
participant as an initiator, in general you can designate initiator and receiver. Here is the
syntax for each variation of a three-way use case, sale, between a retailer, a wholesaler,
and an agent. (We use the convention that the names of untyped parameters imply their
types.)

• (retailer, wholesaler, agent) :: sale (x: Item)

This represents a joint action with three participants, with no distinguished initiator or
receiver. The effect refers to all participants, parameters, and their attributes.

• retailer -> (wholesaler, agent) :: sale (x: Item)

A joint action, this time initiated by the retailer. It is now meaningful to mark some

parameters as inputs—determined by the initiator by means unspecified in the effects

clause—and others as outputs—determined by other participants, used by the initiator
in ways not fully specified in the effects clause.

• retailer -> agent:: sale (x: Item, w: Wholesaler)

A directed joint action that designates the retailer as initiator and the agent as the

receiver; the sale is initiated by the retailer and carried out principally by the agent.
Again, the effect refers to all participants and parameters. In this example, the whole-
saler is identified to the agent by the retailer as a parameter. An alternative arrangement
might leave the choice of wholesaler to the agent, appearing only in the effects clause

based on some attributes of the agent.

• initiator: Object -> agent :: sale (....)

2. Perhaps we should have used a markedly different syntax.

Chapter 4 Interaction Models: Use Cases, Actions, and Collaborations 161
A directed joint action initiated by an object and received by the agent. Nothing is

known about the type of the initiator or its role in this action; hence, initiator is declared

to be of unknown type Object.

Our use case template permits these additional distinctions to be made:

use case sale
participants retailer, wholesaler

initiator retailer -- also listed as participant
receiver wholesaler

parameters set of items -- can separate inputs/outputs for directed actions

A localized operation is a degenerate case of a joint action with a distinct receiver, in
which nothing is known or stated about the initiator’s identity or attributes. All relevant
aspects of the initiator are abstracted into the input and output parameters of the operation.
The following is a fully localized operation that cannot refer to the initiator at all.

Agent:: sale (....)

In the diagram notation, we show an arrow from the initiator
to the action and from the action to the receiver if either one is
known. Each action can have any number of participants and
parameters.

4.2.8 Inputs and Outputs
Within the effects clause, there is no strong difference between participants and parame-
ters: both can be affected by the action. The distinction is intended to document a partial
design decision. The participants exist or will be built as separate entities, with some
direct or indirect interaction between them to realize the action. Together, the parameters
represent information that is passed between the participants, encoded in a form not docu-
mented here, and possibly communicated differently.

The concept of inputs and outputs is meaningful only for directed requests: either fully
localized operations or joint actions with initiators and receivers, in which the invoker of
an operation somehow provides the inputs and uses the outputs. In the case of joint actions
that have no distinguished initiators or receivers, the effect is expressed in terms of, and
on, all participants, and there is no need to explicitly list inputs or outputs.

The input parameters in a directed action are simply attributes of the initiator in a corre-
sponding undirected joint action; they represent state information known to the initiator
when it provides the inputs to a directed request. Similarly, the outputs of a directed action
are state changes in attributes of the sender in the joint action. When parameters are used
in a joint action, the parameter list represents information exchanged that is not fully
determined by attributes in the participants; that is, they provide a degree of nondetermin-
ism.

a (x)
P Q

162 PART II MODELING WITH OBJECTS
4.2.9 Abstracting a Single Operation in Code
We have seen how an entire sequence of interactions between objects can be abstracted
and described as a single joint action. We will next see how even in program code, an
operation invocation itself has two sides: the sender and the receiver. By using input and
output parameters, a localized operation specification decouples the effect on the receiver
from any information about the initiator.

Consider the following interaction sequence between retailer and wholesaler. The
retailer first requests the price of some quantity of the product. It then requests a sale,
paying the required amount, and gets as a return a set of items. Let us examine the sell
operation. Its spec, based on the type model shown in Figure 4.6, could be

action Wholesaler::sell (prod: Product, q: integer, payment: Money) : Set(Item)
pre: -- provided the request product is in our catalog, and payment is enough

catalog->includes (prod) and payment >= prod.price * q
post: -- the correct number of items has been returned from stock

result ->size = q and catalog.stock -= result and cash+= payment

This spec says nothing about how the values of p, q, and payment are related to any
attributes of the retailer. Nor does it say what effect the returned set of items has on the
retailer. Although this lack of detail is useful when you’re designing the wholesaler in iso-
lation, in the bigger picture of the overall interaction between retailer and wholesaler,
those details are important.

The numbers in Figure 4.6 will help you understand what is going on here. The num-
bers mark increasing points in time (although the separations may be a bit artificial for a
procedure-calling model of interactions).

1. Retailer has just issued the first price request.

2. Wholesaler has received that request.

3. Wholesaler has just replied with the requested price.

4. Retailer has accepted the returned price.

Figure 4.6 Scope of operation versus joint action. The numbers represent
increasing points in time.

Sell operation
Joint action

Product

price

 Wholesaler

cash

sell (....)

stock *

0..1*

catalog

rtlr:

p := price(prod,q)1 2

4 3

5 6

8 7

sell (prod,q,payment)

items

Item

whslr:

Chapter 4 Interaction Models: Use Cases, Actions, and Collaborations 163
5. Retailer has just issued the sell request.

6. Wholesaler has just received that request.

7. Wholesaler has completed processing the request and has just returned the items.

8. Retailer has accepted the items.

When we wrote our specification for Wholesaler::sell, the span we were considering was
from 6 to 7, no more and no less. Thus, we ignored all aspects of the retailer in the specifi-
cation.

If we wanted to describe the effect including points 5 and 8, we would include the fact
that the product, quantity, and payment from the retailer are precisely those previously
exchanged with the wholesaler (at time 5), and we would increase the inventory of the
retailer (step 8). We can introduce attributes on the retailer to describe the product, quantity,
and payment known to it at point 5 and the set of items that will be increased at step 8; we
can then define a directed joint action.

action (r: Retailer -> w: Wholesaler) :: sale(out items: Set(Item))
let (prod = r.prod, -- the product the retailer wants

 q = r.qty, -- the quantity the retailer wants
 pay = r.pay) in (-- the amount to be paid
pre:

-- provided retailer has enough cash
r.cash >= pay

-- and product is available and in stock
and w.catalog->includes (prod) and prod.stock->count >= q

post:
-- payment and inventory of that product have been appropriately transferred
r.cash -= pay and w.cash+= pay and

items.product@pre = prod and items->count = q
r.items += items and w.catalog.stock -= items

)

Note that the effect is defined almost completely in terms of attributes of the retailer
rather than by parameters that would otherwise be unrelated to retailer attributes. Some of
these attributes may even correspond to local variables within the retailer’s implementa-
tion, in which the product, quantity, and payment due are stored after step 4. The particular
set of items transferred has been modeled as an output because the specific items can be
determined by the wholesaler in ways not specified here, provided they are of the right
product and quantity.

4.3 Use Cases Are Joint Actions

Joint actions are useful for describing business interactions, interactions within a software
design, and interactions between users and software. We like to separate the specification
of an action from its refinement into smaller actions.

The analysis idea of a use case is a joint action specification at the business or user
level. When describing a use case, you may prefer a diagram view without the type mod-

164 PART II MODELING WITH OBJECTS
els and may want to use a form that looks a bit more like a narrative template for review
by customers. Making it precise is still your job.

use case sale
participants retailer, wholesaler
parameters set of items
pre the items must be in stock, retailer must be registered,

retailer must have cash to pay

post retailer has received items and paid cash
wholesaler has received cash and given items
-- formal versions hidden

It is also useful to document informally the performance requirements of a use case.
Such requirements include whether it is considered a primary or secondary use case (alter-
natively, priority levels), the frequency with which it is expected to take place, and its con-
currency with other use cases.

use case sale
.....
priority primary
concurrent many concurrent sales with different wholesaler reps

no sale and return by the same retailer at the same time
refinement criteria -- what to consider when refining this use case into a sequence

frequency 300-500 per day
performance less than 3 minutes per sale

In the rest of this book we will sometimes explicitly show the informal use case tem-
plate equivalent of a specification. However, the joint action form can always be repre-
sented in the narrative use case template.

© use case A joint action with multiple participant objects that represent a meaningful busi-
ness task, usually written in a structured narrative style. Like any joint action, a use case can

be refined into a finer-grained sequence of actions. Traditionally, the refined sequence is

described as a part of the use case itself; we recommend that it be treated as a refinement
even if the presentation is as a single template.

Many use case practitioners recommend listing the steps of the use case as part of its
definition; we do not do this because it mixes the description of a single abstract action
with one specific (of many possible) refining action sequence. Instead, first describe the
use case as a single abstract action without any sequence of smaller steps; document its
postcondition. This approach forces you to think precisely about the intended outcome, a
step back from the details of accomplishing it.

When you separately refine the action (Chapter 6, Abstraction, Refinement, and Testing),
it is useful to document the refinement textually in a use case template.

use case telephone sale by distributor
refines use case sale

(the pre/post of sale could be shown here)
refinement 1. retailer calls wholesaler and is connected to rep

2. rep gets distributor membership information from retailer
3. rep collects order information from retailer, totaling the cost

Chapter 4 Interaction Models: Use Cases, Actions, and Collaborations 165
4. rep confirms items, total, and shipping date with wholesaler
5. both parties hang up
6. shipment arrives at retailer
7. wholesaler invoices retailer
8. retailer pays invoice

abstract result sale was effectively conducted
with amount of the order total and items as ordered

Some leading use case practitioners recommend adding an explicit “goal” statement to
a use case. In Catalysis this is taken care of by refinement. Goals can usually be described
as some combination of the following.

• Static invariant: Whatever happens, this must be true afterward.

• Action specification: This action should get me to this postcondition.

• Effect invariant: Any action that makes this happen must also ensure that.

Refinement allows us to trace use cases back to the level of such goals.

4.3.1 A Clear Basis for Use Cases
Use case has become a popular term in object-oriented devel-
opment, where it is defined as “the specification of a sequence
of actions, including variants, that a system (or other entity)
can perform, interacting with actors of the system.” This con-
cept is given a solid foundation in Catalysis based on actions
and refinements.

In the common literature, a use case is typically a joint action involving at least one
object (called an actor) outside the system of interest; the granularity of the action is such
that it accomplishes an objective for the actor. The use case is refined into a more detailed
sequence of actions and is explored with sequence diagrams illustrating that collaboration.
Use case diagrams can be used to capture the action refinement. Most current accounts of
use cases fail to separate the specific action refinement (one of many that may be possible)
from the single abstract action because the use case definition itself includes the specific
sequence of steps followed to accomplish the use case; this lack of separation can make it
difficult to handle alternative decompositions.

The use case approach also defines two relationships between use cases—extends and
uses—to help structure and manage the set of use cases. These relationships are defined in
UML as follows.

© extends A relationship from one use case to another that specifies how the behavior defined

for the first use case can be inserted into the behavior defined for the second use case.

© uses A relationship from a use case to another use case in which the behavior defined for the

former use case employs the behavior defined for the latter.

The extends relation serves two purposes. First, it is used to define certain user-visible
behaviors as increments relative to an existing definition—for example, to define different
interaction paths based on configurations or incremental releases of functionality. Second,

«extends»
«uses»

166 PART II MODELING WITH OBJECTS
it does so without directly editing the existing definition—a fancy editing construct. Catal-
ysis meets these objectives within the framework of actions and packages, in which a sec-
ond package may specify additional behaviors or paths for the same basic service from
another package (Chapter 7, Using Packages).

The uses relationship between use cases is meant to let use cases share existing use
cases for some parts that are common. There is, however, a conflict between the often-
stated goal of having a use case correspond to a user task and the need to factor common
parts across use cases. This leads to some confusion and variations in interpretation even
among use case consultants. Catalysis provides actions and effects as the basis for this
sharing; “using” another use case means that you use its effect or quote the action itself.

Based on refinement, Catalysis provides a more flexible mapping between abstract
actions and their realizations. For example, here are two partially overlapping views of a
sale. A customer views sale as some sequence of <order, deliver, pay>. A salesperson may
view sale as a sequence of <make call; take order; wait for collection; file commission
report; collect commission>. Both views are valid and constitute two different definitions
of a sale.

Consider the following example from an Internet newsgroup discussion, which high-
lighted some of the confusion surrounding a precise definition of use case.

A system administers dental patients across several clinics. A clinic can refer a patient to

another clinic. The other clinic can reply, accepting or otherwise updating the status of the

referral. Eventually, the reply is seen back at the referring clinic, and the case file is updated.
Later, the final treatment status of the patient is sent back to the referring clinic. Then there

is a financial transaction between the two clinics for the referral.

Several questions arise.

• Is this one large-grained use case, Refer Patient?

• Are there separate use cases for Send Referral, Accept Referral, Get Acceptance, Final
Referral Status, and Transfer Money?

• Suppose that Accept Referral is done by a receptionist printing it from the system and

then leaving it in a pile for the dentist to review. The dentist reviews the referral and

annotates acceptance. The receptionist then gets back on the system and communicates

that decision. How many use cases is that?

In Catalysis, all these actions are valid at different levels of refinement. There is a top-
level action called Refer Patient. In our approach, the name you choose for a use case is
helpful, but its meaning is defined by the pre- and postconditions you specify for that use
case. As with any other action (see Section 3.1.5, Two Kinds of Actions), a use case can be
refined into a sequence of finer-grained actions; alternative refinements may also be possi-
ble. The steps of a use case are also actions, just as the use case itself is an action.

Use cases give reasonable guidelines on how fine-grained a use case should become, if
only at the bottom end of the spectrum: If the next level of refinement provides no meaningful
unit of business value or information, do not bother with finer-grained use cases; just docu-
ment them as steps of the previous level of use case.

Chapter 4 Interaction Models: Use Cases, Actions, and Collaborations 167
4.4 Actions and Effects

An effect is simply a name for a transition between two states. We can define joint effects
just as we define localized effects in Section 3.8.3.

effect (a: A, b: B, c: C) :: stateChangeName (params)
pre: ...
post: ...

Actions and operations describe interactions between objects; an effect describes state
transitions. You use effects to factor a specification or to describe important transitions
before the actual units of interaction are known. Just as attributes are introduced when
convenient to simplify the specification of an operation, independent of data storage, so
can effects be introduced to simplify or defer the specification of operations.

Effects can also be used when responsibilities of objects (or groups of objects, in the
case of joint effects) are decided but their interfaces and interaction protocols are not yet
known. You can then express actions in a factored form without choosing interfaces or
protocols.

effect Wholesaler::sell (x: Item)
pre: -- item must be in stock
post: -- gained price of item, lost item

effect Retailer::buy (x: Item)
pre: -- must have enough to pay
post: -- has paid price of item, gained item

The joint action (or another effect) can then be written conveniently using a single post-
condition:

action (r: Retailer, w: Wholesaler) :: sale (x: Item)
post: r.buy (x) and w.sell (x) and r: w.registrants@pre

Every action introduces an effect, which can be referred to by quoting it. This is a way
to use the specification of that action, committing to achieving its effect without commit-
ting to specifically invoking it in an implementation.

.... [[(r,w).sale (x)]]

The joint action can also be invoked. This means that one of the protocol sequences that
realizes the joint action will be executed; specific participants and parameters are bound,
but how they are communicated is left unspecified.

.... ->(r,w).sale (x)

It is not meaningful to “invoke” an effect.

168 PART II MODELING WITH OBJECTS
4.5 Concurrent Actions

All actions take up some period of time. Some actions are more interesting because of
what they do while they are in operation than what they have achieved after they have fin-
ished.

For example, a wholesaler and a retailer have an ongoing supply relationship in which
the retailer’s stock is maintained by regular sales by the wholesaler. We can show that
supply consists of a number of sales (see Figure 4.7). A guarantee clause is used to state
what the supply relationship means:

action (retailer, wholesaler) :: supply
guarantee retailer.stock->size >10 -- the retailer’s stock will never go below 10
rely wholesaler.in_business -- provided the wholesaler is always in busi-
ness

The rely condition qualifies the description, saying that it is valid only if the stated con-
dition remains true through the life of the occurrence. If a concurrent action causes it to be
false for any of period of time, then we cannot point to any overlapping period and say,
“There is an occurrence of supply.” (Not according to this description at least; there may
be other descriptions that define what supply means over such a period.)

If you want to define supply to mean that the retailer’s stock is maintained whenever
the wholesaler is in business even though this might vary during the period of a supply
occurrence, you should put it all in the guarantee:

guarantee wholesaler.in_business => retailer.stock–> size > 0

In some cases, we are interested both in what an action achieves from beginning to end
and also what it does while in operation. For example:

action (retailer, wholsaler):: supplyForYear (amount:Money, from:Date, to:Date)
guarantee retailer.stock–> size < 10 and (from:today<to)�

retailer.orders[source=wholesaler]–>size > 0
post wholesaler.income +=amount

and retailer.outgoings +=amount -- net effect is transfer of money
rely wholesaler.inBusiness --makes no sense if not in business
pre from < to --makes no sense if dates aren’t in order

Figure 4.7 A supply activity consists of many sales.

 Retailer

stock : int

 Wholesaler

in_business: Boolean

sale
*

supply

Chapter 4 Interaction Models: Use Cases, Actions, and Collaborations 169
Both the guarantee and the postcondition are qualified by both the precondition and the
rely condition.

4.5.1 Rely and Guarantee
The rely and guarantee clauses contribute to an action speicification as follows:

• An action description has a signature and four clauses: precondition, rely, guarantee,
and postcondition.

• A guarantee clause states a condition maintained while an action occurrence is in

progress.

• A postcondition states a condition achieved between the beginning and the end of an

action’s occurrence.

• A precondition states what must be true at the start of an action occurrence for all of
this description to be applicable.

• A rely condition states what must be true throughout the action occurrence for all of
this description to be applicable.

• There may be more than one description of an action having different rely conditions

and preconditions.

4.5.2 Granularity
The guarantee applies only between the beginnings and ends of actions in the next, more
detailed level of aggregation. A sale might be implemented as making an order followed
by a later delivery; in that case, the retailer’s stock might temporarily go below 10, but
only while a sale is in progress that will bring it up again.

The rely condition works on the same level of granularity.

4.5.3 Exploring Interference
Sequence diagrams are useful for exploring how concurrent actions may potentially inter-
fere with one another. Suppose that we know that sales consist of making an order, deliv-
ering, and paying and that the order is not accepted unless the wholesaler has the items in
stock (see Figure 4.8). The * against the sale action signifies that several sales may be in
progress at once, although each sale is between one wholesaler and one retailer.

Suppose that a retailer orders 10 widgets; then another retailer orders 15 more; the
wholesaler delivers the 10, and then has insufficient widgets to fulfill the order for 15. We
can see this kind of situation more easily by drawing sequence diagrams (see Figure 4.9).
(Remember that each vertical bar on a sequence diagram is an object, and not a type.) Also
it’s often useful to draw snapshots of the states, although here it is necessary only to write
the single stock attribute.

Perhaps Wholesaler needs an “earmarked for delivery” attribute as well as a stock
count. Alternatively, we may prefer to ban concurrent sales or even concurrent transac-
tions of various kinds (see Figure 4.10). Explorations of potential interference scenarios

170 PART II MODELING WITH OBJECTS
are useful, although they are not a fully formal technique. If you are designing an operat-
ing system or a nuclear power station, please refer to a text on verifying concurrent
designs.

We sometimes want to draw on a sequence diagram the extension of an action over
time, indicating that its constituent actions (even if we don’t know what they are) are inter-
leaved with those of another action (see Figure 4.11).

Figure 4.8 Constituent actions for a sale.

Figure 4.9 Attempted concurrent sales.

Figure 4.10 Action multiplicity = 1 bans concurrent actions.

Retailer
1 1

Wholesaler

pre stock > 1

sale

deliver

pay

order

*

jo : Retailer

order (10)
stock = 20

stock = 20

stock = 20

stock = 10

can’t do!

pat : Retailer : Wholesaler

order (15)

deliver (15) ??

deliver (10)

WholesalerBusiness transaction

sale

1

Chapter 4 Interaction Models: Use Cases, Actions, and Collaborations 171
4.5.4 Meaning of Postconditions
Given that actions may overlap, we must take a broader view of the meaning of a postcon-
dition. For example, sale means that, somewhere between the start and the end of the
action, the wholesaler’s till gets fatter by the price of the items. But does it? If you compare
the actual contents of the till before and after the sale, the difference is probably not the
same as is documented. It depends on what else has happened during that interval: other
sales may have been completed; the manager may have taken the cash to the bank; there
may have been a refund or a robbery.

A postcondition therefore means not that the difference between before and after will
always be literally what is stated. Instead, it means that if you take into account concurrent
actions, the cumulative effect will be what you’d calculate from all the postconditions of
the actions. So if you compare the till contents at the beginning and the end of the trading
day, you should get a balance equaling the sum of all the sales, bankings, robberies, and so
on.

4.6 Collaborations

A collaboration is a set of related actions between typed objects playing certain roles with
respect to others in the collaboration, within a common model of attributes. The actions
are grouped into a collaboration so as to indicate that they serve a common purpose. Typi-
cally, the actions are used in different combinations to achieve different goals or to main-
tain an invariant between the participants. Each role is a place for an object and is named
relative to the other roles in the overall collaboration.

For example, the subject-observer pattern uses a set of actions that enables the follow-
ing: the subject to notify its observers of changes; the observer to query the subject about
its state; and the observer to register and deregister interest in a particular subject. These
actions, taken as a set, form a collaboration. When several actions have the same partici-
pants, it is convenient to draw them on top of one another. The collaboration in
Figure 4.12 describes a set of three actions between retailers and wholesalers. This collab-

Figure 4.11 The extension of an action over time.

jo : Retailer

sale

sale

pat : Retailer : Wholesaler

172 PART II MODELING WITH OBJECTS
oration is a refinement of the joint sale use case we specified earlier because particular
sequences of these refined actions will realize the abstract action.

A collaboration represents how responsibilities are distributed across objects and
actions, showing which actions take place between which objects and optionally directing
or localizing the actions. The actions are related by being defined against the same model
and achieve a common goal or refine a single, more abstract action.

Associated with a collaboration is a set of types: those that take part in the actions. Typ-
ically, they are partial views, dealing only with the roles of those objects involved in this
collaboration. For example, the retailer in this collaboration may well have another role in
which it sells the items to end customers.

Note that a type specification is a degenerate special case of a collaboration spec, one
in which all actions are directed and nothing is said about the initiator.

© collaboration A set of related actions between typed objects playing defined roles in the col-
laboration; these actions are defined in terms of a common type model of the objects

Figure 4.12 A collaboration that realizes the abstract sale.

Order Fulfillment

 Retailer

cash: $

 Product

price: $

 Wholesaler

cash: $r

stock

* catalog

0..1

0..1

0..1*

*

*

orderbook
*

registrands
*

*

*

worder(p:Product)
deliver(x:Item)

pay(m:$)

 Item

name: String

Order
action (r:Retailer, w:Wholesaler):: order (p : Product)
	 pre:	 -- product is in catalog, and retailer is registered with wholesaler
		 p : w.catalog & r : w.registrands

	 post:	 -- new order on w’s books for this order
		 w.orderbook += let n: Order.new [product=p & retailer=r & item = null] in n

action (r:Retailer, w:Wholesaler):: deliver (x : Item)
	 pre:	 -- there must have been an order for this delivery
		 w.orderbook[retailer=r & product=x.product & item=nul] <> y

	 post:	 -- item transferred from stock to retailer
		 w.catalog.stock –= x & r.items += x &

		 -- and 1 order on the order books has been fulfilled with item=x
		 w.orderbook[retailer=r & product=x@pre.product
		 & item@pre=nul & item=x] –> size = 1

Chapter 4 Interaction Models: Use Cases, Actions, and Collaborations 173
involved. A collaboration is frequently a refinement of a single abstract action or is a design

to maintain an invariant between some objects.

4.7 Uses of Collaborations

Collaborations are used to describe designs in two primary
forms. In an enscapsulated collaboration the behavior of
an object can be specified as a type; it can then be imple-
mented, with the object comprising others that collaborate
to meet its behavior specifications. Individual classes fall
into this category.

In an Open collaboration, a requirement expressed as
an invariant or joint action can span a group of objects; a
collaboration is a design for this requirement. Services
(infrastructure services—transactions

and directory services—and application-specific ones—spell-checking or inventory mainte-
nance), use cases, and business processes usually fall into this category.

4.7.1 Encapsulated Collaboration: Implementing a Type
A collaboration that has a distinguished “head” object can serve as the implementation of
a type. Like a type, such a collaboration can appear within a three-part box. The difference
is that the middle section now includes actions (directed or not) along with the collaborat-
ing types and links (directed or not) between them.

Figure 4.13 A collaboration implementing the Editor type.

Internal
section

External
section

Name

Editor_implementation

Editor_spec

cut
copy

paste

Document

Selection

cut
copy

cut
copy

ClipBoard

open

copy«implements»

focus

clip

replace(s)cut, copy

:Selection

0,1

0,1

0,1

0,1

*

174 PART II MODELING WITH OBJECTS
So in fact the “type” is now a class or some other implementation unit (such as an exe-
cutable program whose instance variables are represented as global variables within the
process). The collaboration describes how its internals work. The Editor_implementation
type and those within its box are all design types (rather than hypothetical specification
types, as discussed in Section 3.8.6). Any implementation of this collaboration must
implement them in order to realize this collaboration.

The collaboration diagram in Figure 4.13 shows five actions indicated by the action
ellipses on the lines between types: the external cut and copy operations that the editor
must support according to the specification, and the internal cut, copy, and replace
actions—between the editor, the focus document, its internal selection, and the clip-
board—that will realize it. The lines without ellipses represent type model attributes—
now containing directions and eventually denoting specific implementation constructs
such as instance variables. As usual, we can choose to show only some of the actions in
one appearance of this collaboration and show the remaining actions on other pages; all
model elements can be split across multiple diagram appearances.3 You would normally
show all internal actions required for the external actions on that diagram.

4.7.2 Interaction Diagrams
 A Catalysis collaboration diagram shows object and action types; it does not indicate what
sequence of these internal actions realizes the specified effect of a cut. An interaction dia-
gram (Figure 4.14) describes the sequence of actions between related objects that is trig-
gered by a cut operation. It can be drawn in two forms.

• A graph form: Actions are numbered in a Dewey decimal manner: 1, 2, 2.1, 2.2, 2.2.1,
and so on. For consistency, we prefer to show actions with an ellipse ; however,
directed actions can be shown with simple UML arrows, optionally with a “message flow”
arrow next to the action name. This diagram highlights interobject dependencies; sequenc-
ing is by numbering. The encapsulated objects could be shown contained within the editor,
as in Figure 4.13.

• A time-line/sequence form: This diagram highlights the sequences of interactions, at the
cost of interobject dependencies; otherwise, it captures the same information as the graph
version. Again, multiparty joint actions, such as entire use case occurrences, require an
alternative notation to the arrow.

Typically, an interaction diagram shows only two or three levels of expanded interac-
tions, with a specification of the actions whose implementation has not been expanded;
presenting too many levels on one drawing can get confusing. Interaction diagrams can
also be used at the business level (Section 2.7) and at the level of code (Section 3.3.1).

3. Within the scope of a package, as discussed in Chapter 7, Using Packages.

Chapter 4 Interaction Models: Use Cases, Actions, and Collaborations 175
4.7.3 Sequence Diagrams with Actions
An action occurrence is an interaction between two particular points in time involving

specific participant objects bringing about a change of state in some or all of them. An
action occurrence is shown pictorially on a scenario or interaction diagram in one of two
ways:

• As a horizontal bar (with arrows or ellipses) in a sequence diagram

• As a line with an ellipse in an interaction graph; sometimes abbreviated to an

arrow from initiator to receiver

In the action sequence diagram in Figure 4.15, each main vertical bar is an object. (It is
not a type: If there are several objects of the same type in a scenario, that means several
bars.) Each horizontal bar is an action. Actions may possibly be refined to a more-detailed
series of actions—perhaps differently for different subtypes or in different implementa-
tions. The elliptical bubbles mark the participants in each action; there may be several. If
there is a definite initiator, it is marked with a shaded bubble.

We use horizontals with bubbles instead of the more common arrows because we want
to depict occurrences of abstract actions, even of complete use cases. They often do not

Figure 4.14 Two forms of interaction diagrams.

1.1 is a (nested) consequence of 1

2 happens after 1

Optional
“message flow”

document:

clipboard:

selection:

{new} s2:

editor:
copy()

1: s := copy() 1.1: copy()

1.1.1: create()2: replace (s)

New object created

document: clipboard:selection:

s2:

editor:

copy()

copy()

replace (s)

create()

s := copy()

176 PART II MODELING WITH OBJECTS
have a distinguished “sender” and “receiver” and may often involve more than two partic-
ipants. Arrows are acceptable for other cases, including to illustrate the calling sequence
in program code.

Starting from the initial state, each action occurrence in a scenario causes a state
change. For joint and localized actions, we can draw snapshots of the state before and after
each action occurrence. The snapshots can show the collaborators and their links to each
other and to associated objects of specification types.

Other vertical connections show that participation in one action may be consequent on
an earlier one. This situation might be implemented as directly, for example, as one state-
ment following another in a program. Or it might be that a request has been lodged in a
queue, or it may mean only that the first action puts the object in a suitable state to perform
the second.

4.7.4 Scenarios
A scenario is a particular trace of action occurrences starting from a known initial state. It
is written in a stylized narrative form, with explicit naming of the objects involved and the
initial state, and it is accompanied by one of the forms of an interaction or sequence dia-
gram.

scenario order fulfillment out of stock
initial state retailer has no more items of product p1;

wholesaler has no inventory of p1 either
steps

Figure 4.15 Scenario sequence diagram with joint actions.

ach bar
s one
bject Initiator

Action name

Participants

States
Consequent
action

Rendezvous:
needs both
ready

Not
created
yet

order burger

order1 ready

call for bill

open

in_prep

ready

jo : Customer pat : Customer chris : Server

greaseCity : BurgerBar

bill : Chef order1 : Order

Chapter 4 Interaction Models: Use Cases, Actions, and Collaborations 177
1 retailer places an order for quantity q of p1
2 wholesaler orders p1 from manufacturer m
3 wholesaler receives shipment of p1 from m
4 wholesaler ships q1 of p1 to retailer with invoice
5 retailer pays wholesaler’s invoice

4.7.5 Open Collaboration: Designing a Joint Service
Unlike the previous editor example, some collaborations do not have a head object of
which they are a part. There are no specific external actions on the objects that are being
realized by the collaboration. These collaborations are shown in a dashed box to indicate
the grouping. An open collaboration can have all the syntax of an encapsulated collabora-
tion except that there is no “self.” Like a type box, an open collaboration has a name, an
internal section with participant types and internal actions, and an external section that
applies to all other actions.

Figure 4.16 depicts a collaboration for lodging services, showing how responsibilities
are distributed across three actions—check-in, occupy, and check-out—and across the two
participant types. Lodges provide check-in, initiated by the guest; guests occupy rooms,
initiated by the lodge; and check-out can be initiated by either.

This style of collaboration is common when each participant is one role of many played
by some other object and the collaboration is part of a framework. These generic pieces of
design are rarely about one object. Instead, they are about the relationships and interac-
tions between members of groups of objects. Most of the design patterns discussed in
books and bulletin boards are based on such collaborations: for example, the observer pat-
tern, which keeps many views up-to-date with one subject; or proxy, which provides a
local representative of a remote object; or any of the more specialized design ideas that are
fitted together to make any system.

As we discussed in Section 2.6, interface-centric design leads us toward treating these
open collaborations as design units. Each interface of a component represents one of its
roles, which is relevant only in the context of related roles and interactions with others. An
open collaboration is a grouping of these roles into a unit that defines one design of a cer-
tain service (see Figure 4.17).

Figure 4.16 An open collaboration.

Name

Internal section

External section

Lodging Service

Guest

checkin

occupy

checkout

Lodge

178 PART II MODELING WITH OBJECTS
Collaborations, including encapsulated designs, are often built by composing open col-
laborations. The services in an open system are extended by adding new roles to existing
objects and introducing new objects with roles that conform to a new service collabora-
tion, subject to the constraints of existing collaborations.

4.8 Collaboration Specification

Every interacting object is part of a collaboration and usually more than one. Every collab-
oration has some participants that interact with objects—hard, soft, or live—outside the
collaboration. So every collaboration has external actions and internal actions, the latter
being the ones that really form the collaboration. In the encapsulated collaboration in
Figure 4.13, the external actions include the three specified operations on the editor imple-
mentation; in the open collaboration in Figure 4.16, all actions involving the guest or
lodge—except the check-in, occupy, and pay actions—are external.

4.8.1 External Actions
If external actions are listed explicitly, they can be depicted as action ellipses outside the
collaboration box or listed in the bottom section of the box. Encapsulated collaborations
always have explicit external actions. Open collaborations typically have unknown exter-
nal actions; you do not know what other roles, and hence actions, will affect the objects
you are describing. External actions still have specifications in the form of postconditions.

For an encapsulated collaboration, if you wish to repeat an external action’s spec (usu-
ally already given in the type specification for whatever this implements), it can be written
inside the box in terms of self, representing any member of the implemented class. Equiv-
alently, you can write it anywhere, context-prefixed with the class name
Editor_implementation :: .

For an open collaboration, you can write an external action’s spec outside the box; in
that case, you must list the participants and explicitly give them names. External actions
often take the form of placeholders in frameworks—actually replaced by other actions

Figure 4.17 Collaborations can be decomposed and recomposed.

Travel and Lodge Design

Airline Person Lodge

Travel Service

Airline Passenger

Lodging Service

Guest Lodge

Chapter 4 Interaction Models: Use Cases, Actions, and Collaborations 179
when the frameworks are applied, as described in Chapter 9, Model Frameworks and Tem-
plate Packages. Or they are constrained by effect invariants as described in Section 4.8.3.

4.8.2 Internal Actions
Internal actions are depicted as actions, directed or not directed, between the collaborators
inside the middle section of the box. These actions also have specifications either in the
body of the box, with explicit participants, or within the receiver types if they are directed
actions. Alternatively, the specs can be written elsewhere, fully prefixed with the appropri-
ate participant information.

4.8.3 Invariants
Because collaborations explicitly separate external from internal actions, you can now
define invariants—static as well as effect invariants—that range over different sets of
actions. There are two useful cases: ranging only over external actions (internal ones are
excluded and need not maintain these invariants) and ranging over all actions, both inter-
nal and external.

You can write in the bottom section of the box an invariant that applies to all the exter-
nal actions. A static invariant would be anded with all their pre- and postconditions; an
effect invariant would be anded with all postconditions. This approach is useful for
expressing some rule that is always observed when nothing is going on inside the collabo-
ration but that is not observed by the collaborators between themselves. An open collabo-
ration typically cannot list external actions explicitly, because they are usually unknown.
Instead, you can use an effect invariant to constrain every external action to conform to
specific rules. For example, the external effect invariant in Figure 4.18 states.

If any action on a guest causes that guest’s intended location (where) on the following day to

be different from the guest’s current lodge location, that action must also cause a check-out to

take place.

This invariant applies to all external actions on a guest; hence, it excludes the
checkin and occupy actions themselves. A guest who checks into a lodge when his
intended location for the next day is not at that same location will not trigger a checkout.
However, actions from other collaborations could trigger it: The home_burned_down action
from the insurance collaboration, or the cops_are_onto_me action from the
shadowy_pursuits collaboration definitely could trigger it.

Invariants can be written inside the middle section of the box and apply to both internal
and external actions of this collaboration.

4.8.4 Sequence Constraints
You can draw a state chart showing in what order it makes sense for the actions to occur.
This isn’t as concrete as a program, because there may be factors abstracted away that per-
mit different paths, and intermediate steps, to be chosen; a program usually spells out
every step in a sequence. The state chart is a visual representation of sensible orderings
that could equally, if less visibly, be described by the pre- and postconditions of the
actions.

180 PART II MODELING WITH OBJECTS
This is not the same thing as a state chart showing how different orderings actually
result in achieving different abstract actions. The actions of a collaboration may have
many possible sequences in which they can sensibly be used, but each abstract action con-
sists of only certain combinations of them. For example, there are many combinations in
which it makes sense to press the keys of a UNIX terminal. The keystrokes and the
responses you get on the screen are a collaboration. But there is a more abstract collabora-
tion in which the actions are the UNIX commands. To form any one of these commands,
you press the keys in a certain sequence given by the syntax of the shell language. The
overall sensible-sequences state chart is more permissive than the state chart that realizes
any one abstract command.

© collaboration spec A collaboration is specified by the list of actions between the collabora-
tors, an optional list of actions considered “outside” the collaboration, action specs, static

and effect invariants that may apply to either set of actions, and an optional sequence con-
straint on the set of actions.

4.8.5 Abstracting with Collaborations and Actions
The most interesting aspects of design and architecture involve partial descriptions of
groups of objects and their interactions relative to one another. Actions and collaborations
provide us with important abstraction tools.

A collaboration abstracts a detailed dialog or protocol. In real life, every action we talk
about—for example, “I got some money from the cash machine”—actually represents some
sequence of finer-grained actions, such as “I put my card in the machine; I selected ‘cash’; I
took my money and my card.” Any action can be made finer. But at any level, there is a defi-
nite postcondition. A collaboration spec expresses the postcondition at the appropriate level of
detail—“There’s more cash in my pocket, but my account shows less.” Thus, we defer details
of interaction protocols.

A collaboration abstracts multiple participants. Pinning an operation on a single object
is convenient in programming terms, particularly for distributed systems. But in real life—
and at higher levels of design—it is important to consider all the participants in an opera-

Figure 4.18 An external effect invariant.

Internal section

External section

Lodging Service

inv effect Guest::checkout_trigger

 post: self.where (now + 1 day) <> current.location

 Guest

where(Date):
City

checkin

occupy

checkout 0,1 current*

 Lodge

location

Chapter 4 Interaction Models: Use Cases, Actions, and Collaborations 181
tion, because its outcome may affect and depend on all of them. So we abstract operations
to “actions.” An action may have several participants, one of which may possibly be dis-
tinguished as the initiator 1. For example, a card sale is an action involving a buyer, a
seller, and a card issuer. Similarly, we generalize action occurrences, as depicted in sce-
nario diagrams, to permit multiparty actions, as opposed to the strictly sender-receiver
style depicted by using arrows in sequence or message-trace diagrams. A standard OOP
operation (that is, a message) is a particular kind of action. The pre and/or post spec of an
action may reflect the change of state of all its participants. We can thus defer the parti-
tioning of responsibility when needed.

A collaboration abstracts object compositions. An object that is treated as a single
entity at one level of abstraction may actually be composed of many entities. In doing the
refinement, all participants need to know which constituent of their interlocutor they must
deal with. For example, in the abstract you might say, “I got some cash from the bank,”
but actually you got it from one of the bank’s cash machines. Or in more detail, you
inserted your card into the card reader of the cash machine.

Hence, actions and collaborations are useful in describing abstractly the details of joint
behavior of objects, an important aspect of any design.

4.9 Collaborations: Summary

Collaborations (see Figure 4.19) are units of design work that can be isolated, generalized,
and composed with others to make up a design.

To help design a collaboration, we can use different scenario diagrams: object interac-
tion graphs and message sequence diagrams for software; and action sequence diagrams
for abstract actions (see Figure 4.20).

182 PART II MODELING WITH OBJECTS
Figure 4.19 Collaborations.

Internal section

Participant
type

Collaboration

Joint directed action

External section

Joint undirected
action

Lodging Service

inv effect Guest::checkout_trigger

 post: self.where (now + 1 day) <> lodge.location

 Guest

where(Date):

checkin

occupy

checkout

Composing collaborations

 Lodge

location

Travel and Lodge Design

Airline Person Lodge

Travel Service Lodging Service

Airline Passenger Guest Lodge

Chapter 4 Interaction Models: Use Cases, Actions, and Collaborations 183
Figure 4.20 Interactions and Scenario Diagrams.

Parallel
narrative
version

scenario name of scenario
initial state states of named objects
steps: 1... 2... 3...

(c) Action Sequence Diagrams: Multiparticipant action occurrences

Each bar
is one
object Initiator

Action
name

Participants

States
Consequent
action

Rendezvous:
needs both
ready

Not
created
yet

order
burger

order1 ready

call for bill

open

in_prep

ready

jo : Customer pat : Customer chris : Server

greaseCity : BurgerBar

bill : Chef order1 : Order

Parallel
narrative
version

(a) Object Interaction Graphs: Used for describing software designs

1.1 is a (nested) consequence of 1

2 happens after 1

Optional
“message flow”

document:

clipboard:

selection:

{new} s2:

editor:
copy()

1: s := copy() 1.1: copy()

1.1.1: create()
2: replace (s)

Parallel
narrative
version

(b) (Message) Sequence Diagrams: Equivalent to OIGs

New object
created

document: clipboard:selection:

s2:

editor:

copy()

copy()

replace (s)

create()

s := copy()

	Chapter 4 Interaction Models Use Cases, Actions, and Collaborations
	4.1� Designing Object Collaborations
	4.2� Actions (Use Cases) Abstract Complex Interactions
	4.2.1 � Action Types and Refinements
	4.2.2 � Preview: Documenting a Refinement
	4.2.3 � Joint Actions (Use Cases)
	4.2.4 � Localized Actions
	4.2.5 � Joint versus Localized Actions
	4.2.6 � Action Parameters
	4.2.7 � From Joint to Localized Actions
	4.2.8 � Inputs and Outputs
	4.2.9 � Abstracting a Single Operation in Code

	4.3� Use Cases Are Joint Actions
	4.3.1 � A Clear Basis for Use Cases

	4.4� Actions and Effects
	4.5� Concurrent Actions
	4.5.1 � Rely and Guarantee
	4.5.2 � Granularity
	4.5.3 � Exploring Interference
	4.5.4 � Meaning of Postconditions

	4.6� Collaborations
	4.7� Uses of Collaborations
	4.7.1 � Encapsulated Collaboration: Implementing a Type
	4.7.2 � Interaction Diagrams
	4.7.3 � Sequence Diagrams with Actions
	4.7.4 � Scenarios
	4.7.5 � Open Collaboration: Designing a Joint Service

	4.8� Collaboration Specification
	4.8.1 � External Actions
	4.8.2 � Internal Actions
	4.8.3 � Invariants
	4.8.4 � Sequence Constraints
	4.8.5 � Abstracting with Collaborations and Actions

	4.9� Collaborations: Summary

