
 Chapter 14 How to Build a

Business Model

This chapter and the next two chapters illustrate the use of Catalysis on a sample problem
and discuss the how-to of applying Catalysis. This chapter focuses on building a business
model; this is usually the model of a problem domain or business and not of a software
“business object” layer sitting behind a user interface. The software objects in the subse-
quent chapters are based on the business objects, and a naming scheme is used to associate
them.

We start with a set of patterns that describe the process of building a business model
and then illustrate their use in the case study.

14.1 Business Modeling Process Patterns

This section outlines the major steps in building a business process model.

Pattern 13.2, Reengineering, describes reengineering activities in general and discusses
building as-is and to-be models to guide that effort.

Pattern 14.1, Business Process Improvement, discusses specifics that apply to business
process modeling.

Pattern 14.2, Make a Business Model, covers how to go about constructing a useful busi-
ness model.

Pattern 16.6, Separate Middleware from Business Components, discusses a specific and
common concern in business modeling: designing and extending heterogenous and feder-
ated software components so that they directly track the business independently of changes
in technology.

Pattern 14.13, Action Reification, introduces a common modeling pattern. When a use
case is refined into a sequence of finer-grained actions, it is useful to model the abstract
use case in progress as a model type in the detailed level, going through a life cycle as the
detailed actions take place.
543

544 PART V HOW TO APPLY CATALYSIS
Whereas this section’s patterns are about organizing the process of business modeling,
Section 14.2, Modeling Patterns, covers some of the most essential patterns that are useful
in the actual construction of a business model.

Section 14.3 shows how some of these patterns have been applied to the case study of
a video rental business at an abstract level. Section 14.4 details this model using action
refinement, showing the finer-grained actions involved in the business.

Chapter 14 How to Build a Business Model 545
Pattern 14.1 Business Process Improvement

In this pattern, you abstract and re-refine to get an improvement in business organization.

Intent
The intent is to improve the organization of a business, a process not necessarily involving
software or computing machinery. In the process, we can review roles and processes in the
organization and can also require software systems development.

Considerations
A business improvement effort may be triggered by the installation or upgrade of a soft-
ware system, a perceived quality problem in business performance, or the hiring of a new
senior executive. Although the explicit request may be simply to work on a software
project, the analyst’s scope often expands to include business improvement. This is part of
what the system context diagram (see Pattern 15.5, Make a Context Model with Use
Cases) is about—the computer system as one element in the design of a business process.

Companies, departments, people—and hardware and software systems—can all be
thought of as interacting objects; so can the materials and information in which they deal.
Designing the way in which a company or department performs its functions—whether
making loans, manufacturing light bulbs, or producing films—is principally a matter of
dividing the responsibilities among differentiated role players. It also involves defining
the flow of activities and the interfaces and protocols through which they collaborate to
fulfill the responsibilities of the organization as a whole (which is one role player in a
larger world).

This activity is similar to the problem of object-oriented design, and the same notation
and techniques can be applied. (Indeed, an effective help in deciding the distribution of
responsibilities among software objects is to pretend that they are people, departments,
and so on, although the analogy can be carried too far!) This similarity should not surprise
us, because the big idea of OO programming is that the software simulates the business.

Strategy
Approach this problem as a particular case of Pattern 13.2, Reengineering.

546 PART V HOW TO APPLY CATALYSIS
Make a business model (see Pattern 14.2,
Make a Business Model), including associations
and use cases, in which you reflect the existing
process. This example is merely a sketch, less
formal and less comprehensive than would be
useful.

For any as-is element, ask, “Why is it so?”
Abstract the collaborations to single use cases.
Abstract groups to single objects (for example,
individual person roles to departments). Specify
abstract use cases with postconditions rather than
sequences.

It may be useful to reiterate this to several lev-
els of abstraction. Each abstraction generally rep-
resents a goal or goals of a part of the process or
organization.

Refine the abstract model to a different
design. Create the new design and document it as
a refinement of the abstraction (see Chapter 6,
Abstraction, Refinement, and Testing).

Evaluate the result in relation to quality
aspects, including those not readily expressed as
postconditions, such as error rate, cycle time, and
costs. In the end, this technique can only suggest
alternatives. Human, political, and many other
constraints will influence the decision.

Customer

TableService

use case makeOrder
post new Order for customer, food

use case getFood
pre customer has ordered food
post customer has received ordered food

use case pay
pre customer has received food
post customer has paid for food that was

 delivered, Café gets money

Café

Order

ordered

*
*

Customer

Café_Goals

ordered
makeOrder

TableService
pay

↑buyFood

getFood

use case buyFood
post customer has acquired food from Café

 and Café has acquired money from
 customer

Café

received

paid

Customer

SelfService

use case selectFood
post customer has received food

use case pay
pre customer has received food
post customer has paid Café for received food

Café

Item

received

*
*

selectFood Café_Goals

pay

↑buyFood
selected paid

Chapter 14 How to Build a Business Model 547
Consider how to plan the changes so as to cause minimal upheaval and at minimal risk
(see Pattern 13.2, Reengineering).

Benefit
As always, there are many benefits to the act of formalizing your understanding of the sit-
uation in a well-defined notation, even at the business level.1

• It exposes gaps and inconsistencies and prompts questions you might never otherwise

have thought to ask.

• It facilitates clear discussion and mutual understanding among those concerned.

• It provides an unambiguous method of encoding your current understanding even if
your clients don’t understand it directly (see Pattern 15.13, Interpreting Models for Cli-
ents).

The abstract and re-refine technique helps ensure that overall goals of the organization
are still met insofar as they can be expressed in a functional notation.

1. Experience suggests the benefit might be even greater here, where we are conditioned to accept
outrageously loose terminology.

548 PART V HOW TO APPLY CATALYSIS
Pattern 14.2 Make a Business Model

This pattern describes how to build a type and/or collaboration model that expresses your
understanding of some part of the world, making it the final description of your under-
standing of your client’s terminology.

Intent
The intent is to understand clearly the terms your clients are using before anything else and
to ensure that they understand the terms in the same way that you do.

You can build a business model as a prelude to

• Pattern 14.1, Business Process Improvement

• System development, Pattern 13.1, Object Development from Scratch

Because a business model is not oriented to any single design, it can serve as the basis
for many designs and structures within the business.

Considerations
The term business covers whatever concepts are of primary relevance to your clients and
is not necessarily business in the sense of a commercial enterprise that makes money. If
you’re being asked to design a graphical editor, your business is about documents and the
shapes thereon. Cursors, windows, handles, and current selections are possible parts of the
mechanics of editing, but clients don’t care about these mechanics except as an aid to pro-
duce their artwork. If you’re designing a multiplexor in a telecommunications system,
your users are the designers of the other switching components, and the business model
will be about things such as packets and addresses. If you are redesigning the ordering
procedures of a company, the business model is about orders, suppliers, people’s roles,
and so on.

There can be many views of a business. The concerns of the marketing director may
overlap those of the personnel manager. Even when they share some concepts, one may
have a more complex view of them than the other. See Chapter 6, Abstraction, Refine-
ment, and Testing.

You may have frameworks available from which this model can be composed.

Strategy
You should end up with a model showing the types of main interest. They should have
static associations and attributes, and they should have action links showing how they
interact. The model consists of diagrams, invariants, and a dictionary (see Chapter 5,
Effective Documentation). You should be able to describe any significant business event
or activity entirely in terms of the model.

Chapter 14 How to Build a Business Model 549
In making a business model, you will draw on a number of sources.

• Existing procedures, standards documents, software, and user manuals: When these
exist, they should be consulted. But keep in mind that procedures as written often do not
reflect the actual operations. User manuals for existing systems are a rich source of infor-
mation. They act as a key input to reverse-engineering an abstract model of a system and
therefore of a business.

• Observation and interviews: These include actual observation of procedures at work
combined with interviews with the persons involved. Techniques such as CRC cards can
be effective for eliciting information on as-is processes.

• Existing relational or entity-relational (E-R) models: These provide a quick start on the
terminology and some of the candidate object types in the business. However, because of
the mores or normalization and the exclusive focus on stored data, these models can often
be considerably simplified to build a type model. Where used, triggers and stored proce-
dures often encode many business rules.

• Existing batch-mode systems: Often, late-night COBOL batch jobs encode critical sets
of business rules. Many of these rules can be captured as time-dependent static invariants
on the type model (the batch job cuts in to make sure that no objects will be in violation of
these invariants, come sunrise) or as effect invariants, of the form “Whenever this thing
has changed, that other thing must be triggered.”

• Feedback from prototypes, scenarios, and models: As always, any “live” media pro-
vides valuable feedback and validation of models being built. For example, storyboards,
prototypes of UI screens, CRC-card-based scenarios, and model walkthroughs can all be
used.

There are useful rules of thumb for finding objects, attributes, and actions. Looking
through existing documents (business requirements, user manuals, and so on), map nouns
to object types, verbs to actions, static relationships to associations, rules to static and
dynamic invariants, and variations to subtypes or other refinements.

Focus on one type at a time and consider the interactions its members have with other
objects. Draw use-case ellipses linked to participating objects. Some actions may have
several participants of the same or different types. What roles are the participants playing
within this collaboration? What information do they exchange?

What is the net result of an action? For example:

For an airplane: control—Pilot; check position—GPS, GroundStation; lift—Atmosphere.

Focus on one type at a time and ask yourself, At any one moment, what information
would we want to record about this type of object? Write this information as attributes and
associations sourced at this type. For each one, ask what the type of that information is,
giving the target type. Don’t confuse static information with actions; actions abstract inter-
actions, whereas attributes represent information known before and/or after the actions.
For example:

550 PART V HOW TO APPLY CATALYSIS
For an airplane: pilot, copilot: both of type Pilot; airspeed, groundspeed: Speed; scheduled-
to-land-at: Airport; previous 100 destinations: set of Airports; pilot’s-spouse’s-favorite-shoe-
color: Color.

Use snapshots to verify that all the information of interest can be represented by the
static associations.

Determine a consistent level of abstraction in relation to actions: Are you going to
worry about individual keystrokes or talk only about broad transactions? The highest-level
action that could be useful should accomplish a business task or objective or should
abstract a group of such actions. The lowest-level action that could be useful should con-
stitute an indivisible interaction; if the interaction fails to complete successfully or other-
wise is aborted, there should be no effect that would be useful at the business level.

Some business models focus on the types that a single client can manipulate, such as
the Drawing example here. In this case, all the actions are shown localized in the Drawing
and its constituents. Other models must be more concerned with interactions between
objects, such as the Library example. Figure 14.1 illustrates both models.

The resulting business model acts as the central glossary of terms for all projects associ-
ated with it: business engineering, software requirements, and so on.

Figure 14.1 Range of business models.

Drawing Business Model

Drawing

addShape(Shape)
deleteShape(Shape)

* content

Shape

covers(Point)
color

move(Vector)
rotate(Angle)
scale(float)

Triangle Circle

Library Business Model

Library

supervises

findreserve

Stock

checkOut

Librarian

Title

*
*

Book

StockKeeper

add

withdraw

Member

* *

return

Chapter 14 How to Build a Business Model 551
Pattern 14.3 Represent Business Vocabulary and Rules

The purpose of the model is to represent both the terms used in the business and the rules
and procedures it follows. Reduce business rules to invariants, generalized effect invari-
ants, action specs, and timing constraints.

Intent
The intent is to reduce misunderstandings between colleagues about the terms and param-
eters of the business. Making some of these business rules explicit and precise aids identi-
fication of software requirements (which parts of the rules are dealt with by which
component, which by users), type models (the models provide the vocabulary that helps
specify the rules), traceability from software to business, and enterprise-level knowledge
management (explicit representation of business knowledge and rules).

Strategy
Seek business rules in the current actual business process, the process as documented, and
rules encoded in existing software systems (from user manuals, database triggers, and
batch mainframe programs; see Chapter 17, How to Reverse-Engineer Types). Restate
these business rules in terms of the following (in descending order of preference):

• Static invariants over the model

• Effect invariants that must apply to every action

• Timing constraints (“This must be done within . . .”)

• Action specifications, including time-triggered actions

If an informal rule cannot be formalized in this way or starts to look complicated, you
should suspect that the static model is inadequate and add new convenience attributes to
make it simpler. Adding new named effects can also simplify things.

Wherever business rules are susceptible to change, exploit packages to separate them
out. Remember that, in Catalysis, you can always say more about a type, action, and so on
in another package; separating certain rules makes versioning and configuration manage-
ment easier.

552 PART V HOW TO APPLY CATALYSIS
Pattern 14.4 Involve Business Experts

The idea here is to keep the end users involved in the business model.

Intent
The business model should be owned by the people who run the business. (The IS depart-
ment is there only to coordinate writing it down.)

Strategy
Create the first draft of the model by interviewing experts and by observing what they do.
Goals, achievements, tasks, jobs, and interactions of any kind should be sketched as
actions; nouns are sketched as types.

For each action that appears on your sketch, ask, “Who’s involved in this action?
Whom does it affect? Looking at different specific occurrences of it, what could be differ-
ent from one occasion to another?” These questions yield the participants and parameters.
Don’t forget to distinguish objects from types and parameters from parameter types.

For each type that appears on your sketch, ask, “What can be known about this? (Does
it have a physical manifestation? What do you record about it? What creates it? What
alters its state?” Or if it is an active object (a person or machine), “Whom does it interact
with? What tasks does it accomplish?” These questions yield attributes and associations of
the type as well as actions it participates in.

For each action, ask, “What steps are taken to accomplish this?” For each type, ask,
“What constituent parts can it have?” These questions yield action and object refinements
(see Chapter 6, Abstraction, Refinement, and Testing).

For each type, ask, “What states does it go through (or stages of development, phases,
or modes)?” Draw state charts and check state transition matrixes (see Section 3.9.7,
Ancillary Tables). The transitions yield more actions.

Remember to include abstract concepts (such as “Problem” or “Symptom”) as well as
concrete things (such as “Fault Report”) and relate them together.

Ask, “What rules govern this action/state/relationship between types?” This will yield
invariants.

With your analyst colleagues (who have perhaps been interviewing other experts con-
currently) work out how to make the picture cohere. Formalize action specifications,
define states in terms of attributes, make conjectures, and raise questions. Then go back to
the experts with questions. (Don’t be afraid to do so—people love explaining their jobs!)

After a reasonable (although still imperfect) model is drafted, hold workshops for the
experts to review it. Take these in stages: static model first; then actions; then invariants
and use case specs. Use snapshots to communicate the intent of the model.

Chapter 14 How to Build a Business Model 553
Post parts of the model around the walls in a large room. Begin with a general presenta-
tion about types, associations, and actions so that your colleagues can read the diagrams.
Then have everyone walk around the room—don’t permit sitting—congregating around
the subject areas they are most interested in. Have one of the analysis team on hand to
walk people through the details. Also have scribes on hand to note all the comments.

Cycle until everyone more or less (although not entirely) reaches agreement.

554 PART V HOW TO APPLY CATALYSIS
Pattern 14.5 Creating a Common Business Model

Rather than build a business model first, you create a common model from several compo-
nents in the business and from the definitions of the interfaces.

Intent
The intent is to deliver a business model, given that you have a variety of components,
each with its own model. The components have been developed separately. You need to
connect them, whether through a live interface, by enabling files to be written by one and
read by another, or with a manual procedure.

Considerations
This problem is found wherever different software deals in the same area: Most of us have
encountered the problems of translating from Word to or from some other documentation
tool. The writers of the import, export, and translation modules must begin by building a
model of the document structure.

It is also a common problem in large organizations; each department has bought its
own software, and the IS department has the task of making them talk together more
coherently. (See Section 10.11, Heterogenous Components.) The problem is particularly
acute when two enterprises merge and they have two different systems talking different
languages.

The most high-profile cases involve communication across the boundaries of organiza-
tions: from banks to the trade exchanges; from one phone company to another; or between
airlines and ticket vendors.

The important thing is that we are not dealing with a model of any of the programs that
communicate. Instead, at issue is a model of what they are talking to each other about,
whether documents, financial transactions, aircraft positions, or talking pictures.

Strategy
First, agree with whomever is in charge of the various components that you are going to
create a common standard. Try to ensure that the most powerful player doesn’t just go
ahead and do things his or her own way.

Second, accept that there will never be a standard model that everyone works to: There
will always be local variants and extras. Adapters will be used to translate from one to
another. Therefore, timebox the generation of the common model.

Chapter 14 How to Build a Business Model 555
Now we come to the technical part. Consider the models of each of the components and
write a common model of which all of them can be seen as refinements. Write abstraction
functions (see Section 6.1.4, Model Abstraction) to demonstrate this, mapping each com-
ponent model to your new model.

There will be interesting features within some of the components’ models that not all of
them can deal with. Not all televisions can deal with color signals; not all fax machines
understand Group III compression; not all word processors understand tables; not all of
the software components running a library will understand the concept of the acquisition
date of a book even though most of them will understand its title.

Add to your common model these additional features (perhaps in different packages).
Work out whether and how each component will deal with the additional information
when it gets it and can’t deal with it or doesn’t get it when it expects it.

556 PART V HOW TO APPLY CATALYSIS
Pattern 14.6 Choose a Level of Abstraction

This pattern discusses the need to reach agreement with your colleagues concerning how
much detail you’re dealing with at each stage.

Intent
We have seen that it is possible to document objects and actions at any level of detail or
abstraction. This is a powerful tool, but two problems commonly arise.

• It is very difficult for programmers (especially good ones) to keep away from the detail
and implementation.

• Misunderstanding about the level of detail you’re working at is a common source of
arguments.

Strategy
Use the abstraction and refinement techniques (see Chapter 6, Abstraction, Refinement,
and Testing) to explore the levels that are more abstract and more detailed than you have.
For example, after you have identified some actions, ask yourself, “What more-abstract
action or object are these part of?” And “What more-detailed actions or objects would
form part of this?”

Make sure that for each action at any level, you at least sketch out the effects. Do this
with sufficient precision to be aware of which types in the model are necessary to describe
the effects.

Each layer of abstraction will have a coherent set of actions that tell the full story at
that level of detail and will have a static model that provides the vocabulary in which
that story is told. Different layers will have different sets of actions and static models.
Programmers can write test code before writing implementations.

This process of exploration tends to provide insights leading to a more coherent model.

Begin by sketching the various layers. Decide in advance how much time you will
spend in this exploration—anything from half an hour to one day, depending on the size of
the model. By the end of it, you should be able to make a more informed choice about
what level to focus on and elaborate completely.

Chapter 14 How to Build a Business Model 557
14.2 Modeling Patterns

The preceding patterns have been about planning the development process. The next few
patterns are more in the style of conventional analysis and design relating to the construc-
tion of a business model.

There are many good sources for patterns appropriate to this modeling. Our main con-
cern here is to point out the patterns that we see as most essential. The Catalysis frame-
works repository will eventually hold such model frameworks, and a project team can
always define new model frameworks.

558 PART V HOW TO APPLY CATALYSIS
Pattern 14.7 The Type Model Is a Glossary

In this pattern, we ensure that every term used within the field appears in the model.

Intent
The intent is to ensure that the type model fully represents the business domain.

Considerations
The purpose of the business model is to represent all the vocabulary that is used by the
people in the business. It can augment or form a more structured variant of the company or
project glossary. Its advantage over the plain glossary or dictionary of terms is that it can
summarize complex relationships readily.

On the other hand, in an alphabetical dictionary it is easier to look up the terms. But
this loses the context and motivation for those definitions.

Strategy
Model the business by drawing the glossary explanations in pictures. Ensure that every
concept written in documents that describe the business, or uttered by experts in the busi-
ness, is represented somewhere. Generally, nouns map to object types, and verbs map to
actions.

Remember that you are modeling the business, and not writing a database schema or
program or modeling purely physical relationships. The associations are attributes drawn
in pictures and not lines of communication or physical connections. (The latter would nor-
mally be drawn as an action.)

Feel free to include redundant terms: if people talk about it, include it. Write it as an
invariant and describe how it relates to the other terms. An example is shown in Figure
14.2.

A level of detail you would have to optimize in an implementation is OK in a business
model. For example, some pages in a library book may be torn. In an implementation, a
list of integers, representing damaged page numbers, could be optionally attached to each

Figure 14.2 Business model with convenient terms and invariants.

Library

Library :: stock = catalog.copies
* copies

catalog

*

stock

*

Book Title

Book Copy

Chapter 14 How to Build a Business Model 559
book copy; but to model the world more directly, let’s model a book as a list of pages and
give every page a Boolean torn attribute.

Although the static type model tells what snapshots could be drawn at any one moment,
a snapshot may contain plans for the future (schedules and timetables) as well as historical
data (audit trails). So a list of past loans would be a valid attribute of a book.

Complement the pictures with explanatory prose. Attach to every type and action a
glossary-style description of what it is. Have your tool dump an alphabetical list of these
descriptions.

Divide the model into smallish type diagrams and write a narrative description of the
business in which these diagrams are embedded. Use a modeling tool that supports
embedding within narrative. (See Chapter 5, Effective Documentation.)

560 PART V HOW TO APPLY CATALYSIS
Pattern 14.8 Separation of Concepts: Normalization

Starting with a draft model, you enhance it by considering a number of rules.

Intent
Analysts who have experience with entity-relational modeling sometimes ask whether
constructing a static object-oriented model is any different. Much is the same, and some
aspects are different.

• In business and requirements modeling, the objective is not to design a database.
Therefore, we do not need to be so strict about normalization, and we need not distin-
guish attributes from associations.

• Redundant links and associations are OK, if defined with invariants.

• Object models have sub- and supertypes.

• Object models include actions, whether joint or local to an object type. Sometimes the

only distinction between one type of object and another is how it behaves (that is, how

the effects of actions depend on it). An entity-relational model would not make these

distinctions.

• In an entity model, each type should have a key: a set of attributes that together define

the object’s identity and distinguish one object from another. In an object model, every

instance has an implicit identity: two objects may have all the same attribute values and

yet still be different objects.

Nevertheless, we can use some of the techniques from E-R modeling to improve a model.

Strategy
Look for the following triggers to re-factor your model.

• For a type having many associations and attributes, consider whether it should be split
into several associated types (see Figure 14.3).

Figure 14.3 Splitting types.

Book

due: Date
borrower name: String
borrower address: String
title: String
author: String

Member

name: String
address: Address

Author
1

*

*

1..* *
Book Title

name: String

0,1

borrower
Book Copy

due: Date

Chapter 14 How to Build a Business Model 561
• For any association, but particularly many-many associations, consider modeling it as a

separate type (see Figure 14.4).

• For object identifiers, names, keys, tags, and similar attributes, use associations.

Figure 14.4 Reifying associations.

Loan

due: Date

Member
0,1

borrower *
Book Copy Member

0,1

borrower *
11

0,1

Book Copy

Book Copy :: borrower = loan.member

Link to Member
as in preceding
figure

Book Copy

borrower: Member ID

562 PART V HOW TO APPLY CATALYSIS
Pattern 14.9 Items and Descriptors

This pattern distinguishes things from descriptions of things.

Intent
When someone says, “I wrote a book” and someone else says, “I bought a book,” do they
mean the same thing by book? If the latter speaker is a publisher, then maybe; but when
most people buy a book, they are buying one copy.

In a Library control system, we would have to distinguish individual Copies of books
from the book Title. When Members borrow a book, they borrow a specific Copy; if they
reserve a book, they’re actually reserving a Title and don’t usually care which copy they
get. There are many Copies for one Title. Titles have attributes such as author and the
actual title in the sense of a name (oops—another potential confusion here).

We often find the same potential confusion. A manufacturer’s marketing people will
discuss the launch of a new car; the customer will buy a car: But one means a model or
product line, and the other means a specific instance of it. On the restaurant’s menu, we
see a variety of meals, with descriptions and prices; the meal a customer eats is not a
description or a price but rather a physical item that conforms to the description. The flight
you took the other day is one occurrence of the flight on the timetable.

The item/descriptor distinction is exactly the same as instance/class. (We use different
words to avoid any additional confusion between the modeling domain and the software.)
Indeed, in some programming languages (such as Smalltalk), classes are represented by
objects, and each instance has an implicit link to its class. The class objects are themselves
instances of a Class class, and new ones with new attributes can be created at runtime.
This property of the language is known as reflection.

Strategy
In the most straightforward cases of items and descriptors, reflexive techniques are not
necessary. The attributes of interest are the same for every book Copy in the library: who
is borrowing it, what its Title is. Once we have spotted the distinction, there is no further
complication.

A more difficult situation arises when we need to model a system in which the users
may decide, while the system is running, that they need essentially new classes of items,
with new attributes, business rules, and actions.

Few systems genuinely allow end users to make arbitrary extensions; those that allow it
must provide a programming or scripting language of some sort. Normally there is some
restriction; all the additions fit within a framework. An example is a computer aided
design (CAD) system, in which new kinds of mechanical parts can be added and the users

Chapter 14 How to Build a Business Model 563
can write operations that extend the code. Another example is a workflow system, in
which users can define new kinds of work objects and their flows through the system.

In these cases, a framework can be defined (see Chapter 9, Model Frameworks and
Template Packages) that imposes global constraints. The scripting language can be
defined separately.

564 PART V HOW TO APPLY CATALYSIS
Pattern 14.10 Generalize and Specialize

Subtyping and model frameworks are used to simplify and generalize the model.

Intent
The intent is to make the model applicable to a wider range of cases and to provide
insights to broaden the scope of the business or make it easier to understand.

Considerations
A supertype describes what is common to a family of types. A new variant can be created
by defining what is different in the new type (see Chapter 3).

A model framework describes a family of groups of types. A collaborating group of
types can be created by parameterizing the template. (See Chapter 9, Model Frameworks
and Template Packages.)

The effort of generalization, either to a supertype or to a framework, usually leads to
useful insights into the model. Also, it tends to simplify things: You find common aspects
where you didn’t notice them before, and you recast the model to expose them. Further-
more, the result is more easily extensible.

Strategy
Find common aspects between types in your model. Check that the similarities are real—
that the users use a concept covering them both. Construct a supertype, and redefine the
source types as its subtypes.

Find common aspects between groups of types in the model. Construct a template
package containing everything that is common to the different occurrences, then rewrite
them as framework applications.

Following are some specific triggers.

• Same types of attributes and associations in different types: form a supertype.
• Several associations with the same source and mutually exclusive 0,1 targets: form a

supertype for the targets.
• Several n-ary associations with a common source, in which invariants and postcondi-

tions frequently need to talk about the union of the target sets: Form a supertype for the

targets.
• Invariants and postconditions focused on type A use only some subset of the attributes

of B, an attribute (or association) of A (see Figure 14.5): put the unused attributes in a

subtype of B. (This reduces spurious dependency.)
• Similar “shapes” in different parts of the type and action diagrams: form a model frame-

work that can be applied to recreate the collaborating groups.

Figure 14.5 Introducing subtypes to decouple.

A

inv

…b.e…

B

d

b e

f
E

F

A

inv

…b.e…

B

B1

d

b e

f

E

F

Chapter 14 How to Build a Business Model 565
Pattern 14.11 Recursive Composite

Model an extensible object structure with a recursive type diagram.

Strategy
Let’s look at a general framework for modeling extensible structures (see Figure 14.6).
For a tree, set np to be 0,1; for a directed graph (with shared children), set np to *.

You must decide whether you will permit loops in the instance snapshots. If you will

not, import instead the no-loops package (see Figure 14.7).

Examples
The recursive composite pattern shows up in many problems. With np=1, no loops:

• Programming languages: Some statements (if, while, blocks) contain other statements;
others do not (function calls, assignments).

Figure 14.6 Template for recursive composite.

Figure 14.7 Recursive composite without instance loops.

Recursive Composite

<Node>
children

*

<np>

parent
<Leaf> <Branch>

No-Loops Recursive Composite

import Recursive Composite

Node :: ancestors = parent + parent.ancestors

	 -- My ancestors are the set of my parents
and all their ancestors

Node :: not ancestors -> includes(this)
	 -- I am not among my own ancestors

ancestors

*
<Node> <Branch>

566 PART V HOW TO APPLY CATALYSIS
• Graphical user interfaces: Some elements of a screen are primitive, such as buttons or
scrollbars; others are composites of the smaller elements.

• Military or organizational hierarchies

With np=2, no loops:

• Family trees

With np=*, no loops:

• Macintosh file system

• Spreadsheets (each cell may be the target of formulas in several other cells)

With np=*, loops allowed:

• Road maps

• Program flowcharts

Chapter 14 How to Build a Business Model 567
Pattern 14.12 Invariants from Association Loops

Loops in a type diagram suggest the possibility of an invariant.

Intent
The intent is to flush out useful constraints. You encounter this pattern when building a
static type model (as part of a business model or component spec); it helps you to capture
static invariants.

Motivation
A static invariant is a condition that should always be true, at least between the executions
of any action that forms part of the same model. As a Boolean, it is composed of compari-
sons between pairs of objects. They might be < or = comparisons between numbers or
other scalars; or more-complex comparisons defined over more-substantial types; or iden-
tity comparisons (whether one object is the same object as another).

Many invariants can be constructed when there is a loop2 in the static type model: two
different ways of coming at items of the same type. For example, a Library’s books can be
lent only to its own members. We could write

LoanItem :: borrower <> nil ==> borrower.library = library

We can see the loop easily (see Figure 14.8). Here’s another:

Member :: age >= library.minimumAge

2. We are not referring to loops in instance snapshots here, as in Pattern 14.11, Recursive Compos-
ite.

Figure 14.8 Association loops need invariants.

Loopmembers *

Stock Item
stock

*

0,1

borrower

Library

minimumAge: int

Member

age: int

LoanItem
*

Reference Item

568 PART V HOW TO APPLY CATALYSIS
Where’s the loop? We said that attributes and associations are interchangeable in analy-
sis. We could have drawn int as a type in its own box as shown here.

The only exception is to write a constant into the invariant itself.

Strategy
Whenever you notice a loop in the static type diagram, ask yourself whether there is any
applicable invariant. The loop can have any number of links, from two upward; and a link
can traverse up to a supertype.

Loopint

Library

members *

*

1
1

minimumAge

age

*

Member

Chapter 14 How to Build a Business Model 569
14.3 Video Case Study: Abstract Business Model

In this section we begin our case study of a video rental business.3

14.3.1 Informal Description of Problem
The business sells and rents, or hires, videos to people through many stores. To rent a video

from a store, a customer must be one of its members; becoming a member takes a few minutes.
Anyone can buy a video without being a member.

Members can reserve a video for rent if all copies of it are currently hired. When a copy of
the video is returned, the member will be called and the copy will be held for as long as three

days, after which time the reservation will be canceled if not claimed.

Only a limited stock of videos is kept for sale, but a member can order a video for purchase.
A store can order and acquire copies of a video from the head office.

The business head office sets the catalog of videos and their sale prices; this is common to all
stores.

Each store keeps copies of a subset of the catalog for rent and for sale, and each store sets its

own rental prices (to adjust for local competition). For strategic purposes, statistics are kept of
how often and when last a video has been rented in each store. It is also important to know how

many are available in stock for rent and for sale.

14.3.2 Concept Map
It is often helpful to start with an initial informal sketch of the main terms and concepts,
drawn as a concept map. It serves as a concrete starting point for capturing the vocabulary
used and the relationships between terms (see Figure 14.9). A concept map is simply a
graph of labeled nodes and labeled (preferably directed) edges. We do not try to formalize
the map or even worry much about distinguishing objects, types, actions, and associations.
The concept map can serve as the starting point for the type model and collaborations.

14.3.3 Formalized Model
The aim is to get a more precise statement of the requirements. We segment the require-
ments into overlapping areas of concern, or subject areas, but focus in this

3. Thanks to Texas Instruments Software/Sterling Software for permission to use the video case
study in the book; the authors originally developed this example for IT software.

570 PART V HOW TO APPLY CATALYSIS
description on the primary subject area of customer rentals and sales. There could be other
subject areas for things such as marketing, purchasing, collections, and so on; they would
define overlapping types and attributes and might add further specifications to common
actions.

There are two distinct forms of abstraction at work on objects and
actions. We must be clear about the boundary of objects and actions
being modeled. We could model abstract actions, such as a complete
rental cycle; or we could describe finer-grained interactions, such as
reserve, pick up, return, and so on.

Similarly, we could model a video store as one large-grained
object—an external view; or we could describe internal roles and
interactions, such as the store clerk, the stockkeeper, the manager,
and the video system—an internal view. We illustrate two levels of
action abstraction in this chapter; the object granularity will be
refined later, when we define the system context and user roles.

14.3.4 Subject Area: The Customer-Business Relationship
Rq 1 The business rents and sells videos through many stores.

The type model in Figure 14.10 summarizes the interactions between Stores and Custom-
ers. The elements on the diagram are as follows.

• Object types: The boxes represent types of objects. There can be many Video Busi-
nesses, Video Stores, and Customers in the world.

• Associations: The arc corporation is a link type (or association). It shows that for any
given Video Store, there is exactly one Video Business, which is its corporation (although
different Stores may have different Businesses). The * shows that there may be any num-
ber of Video Stores that share a single Video Business as their corporation.

Figure 14.9 Concept map for video store.

Informal
attributes

video business video store

master catalog

rent, buy, reserve

branches

catalog

members

customer

video

	 price

	 hired

	 held

Chapter 14 How to Build a Business Model 571
• Use cases: The ellipse (oval) represents a use case action called sell. (Actually, because
exactly the same set of participants is involved in rent, we have written two labels in the
same ellipse; but there are really two action types here.) Sell is an action each of whose
occurrences involves one Video Store, one Customer, and one Video. (If there were several
of any participant, we could use cardinality decorations.) We have not visually distin-
guished action participants from parameters here.

An occurrence of a use case action is a dialog of interactions, usually causing a change
of state in some or all of its participants. The participants are all those objects whose states
affect or may be affected by the outcome. An action is spread over time; when we look at
it more closely, it is composed of smaller actions (such as scan shelves, choose, pay, and
take away).

14.3.5 Dictionary
Accompanying the diagrams should be a dictionary carrying definitions of each object
type, attribute, and action.

• Video Business A company with branches that sell and rent Videos.

• Video Store One of the branches of a Video Business.

• Customer A legal entity to whom videos may be sold or hired.

• Video An individual item that can be sold or hired.

• sell(VideoStore, Customer, Video) The interaction between a Video Store and a Cus-
tomer whereby the Customer acquires ownership of an instance of a particular Video

previously owned by the Business in exchange for money.

• rent(VideoStore, Customer, Video) The interaction between a Video Store and a Cus-
tomer whereby the Customer is given possession, for some period of time,
of an instance of a particular Video owned by the Video Business and normally kept at
the store in return for a payment to the Store.

14.3.6 Use Case Actions: Precise Specs
It would be better to describe the use case actions more precisely. This cannot be done
without the ideas that both VideoStores and Customers can own Videos and can possess
money. Something like this:

Figure 14.10 High-level business collaboration.

*

Video Business

corporation 1

Video Store rent, sell
vendor

customer
Customer

Video

572 PART V HOW TO APPLY CATALYSIS
use case sell (vendor:VideoStore, cust:Customer, v:Video)
post:

v is removed from stock of videos owned by vendor and is added to the videos

owned by customer; the vendor’s cash assets are increased by the price of v set
by the vendor, and the customer’s are depleted by the same amount.

What exactly do we mean by “the stock of videos owned by the vendor”? Let’s aug-
ment the model to include this and then rewrite this statement more succinctly (see Figure
14.11). VideoStores and Customers are kinds of Owner; Owners have cash assets and own
Videos. A VideoStore has a price for many Videos. We should augment the dictionary with
these new types and attributes.

An attribute, like a link, is a read-only query. The main difference is that it is shown as
text rather than pictorially. In theory, the two forms are interchangeable, but in practice the
attribute form is used when the target type is defined in some other body of work. The
inventor of Money does not know about Owners or VideoStores.

Now we can rewrite the description of sell. It should be written both in natural language
(more readable) and precise terms (less ambiguous):

use case sell (vendor:VideoStore, cust:Customer, v:Video)
post:

-- v is removed from the stock of videos owned by the vendor:
vendor.owns –= v
-- and added to the customer’s stock:
and cust.owns += v
-- The vendor’s cash is increased by the vendor’s price for v:
and vendor.cash += vendor.priceOf(v)
-- and the customer’s assets are depleted by the same amount:
and cust.cash –= vendor.priceOf(v)

Every postcondition is a predicate (a Boolean, true/false condition) stating what must
be true if the designer has done the implementation properly. So the clauses are connected
by and, and there is no sequence of execution implied.

The purpose is to state properties of the result at the end of the use case, abstracting
away from any details about sequences and how it is achieved. It is a relation between two

Figure 14.11 Revised and improved business collaboration for sell.

Video Store

priceOf(Video):Money

Owner

cash: Money

sell
vendor

owns

*

customer
Customer

Video

Chapter 14 How to Build a Business Model 573
states, before and after the use case has occurred. In later examples, you can sometimes
see the “before” value of a subexpression referred to as expression@pre.

The construct x += y is an abbreviation for x = x@pre+y. x is what it used to be, plus y;
it is predefined as an effect. This is not an assignment as in programming language.
Instead, it is only a description of a part of the relationship of the two states.

There are many uses for operations on sets in abstract descriptions. Because the tradi-
tional mathematical symbols are not available on most keyboards, OCL defines ASCII
equivalents. It is easier to use + for union, * for intersection, and – for set difference
(see Section 2.4.5, Collections), and in Catalysis these features can be extended by the
modeler.

14.3.7 Preconditions and More Modeling
Now let’s try to describe the rent use case. To be comparable to sell, the intention is to let
it encompass the whole business of renting a video, from start to finish. We will separately
describe how this refines into a sequence of constituent actions such as renting and return-
ing.

There’s a slight conceptual difficulty here. Although there’s an obvious transfer of
money from one participant to another, what you’ve gotten for it once you’ve returned the
video is less concrete than in the case of a sale. The most you’re left with as a souvenir is
whatever impression the video has made on your mind. Nevertheless, there’s no reason
that we shouldn’t model this abstract notion as a Past Rental and model the rent use case
as adding to your list of them (see Figure 14.12).

In another part of the document, we’ve said that VideoStores and Customers are kinds
of Owner, which have cash and own Videos; so it is unnecessary to repeat it here. Each

diagram is in effect a set of assertions about the elements that appear in it; if an element
appears in several diagrams, then all their assertions apply to it. Rather than show all the

Figure 14.12 Model for rent.

Figure 14.13 Incorporating the term members.

Video Store

hireCharge(Video, Period):Money

rent

days: Period

of *

* score

Customer

PastRentalVideo

Video Store
members

*
Customer*

574 PART V HOW TO APPLY CATALYSIS
parameters pictorially by linking the use case to the types, we can show them as attributes
within the use case ellipse.

One further complication is this requirement:

Rq 2 To rent a video from a store, a customer must be one of its members.

At present, there is nothing in our model representing membership, so we add it (see Fig-
ure 14.13).

Now we can state a precise description of the use case:

use case rent (hirer:VideoStore, cust:Customer, v:Video, days:Period)
post:
-- if customer is a member, then...
hirer.members→includes (cust) implies

(-- a new PastRental of v is added to customer’s ‘score’:
cust.score += PastRental.new [of=v]
-- The vendor’s cash is increased by

-- the hirer’s hire rate for v at the time of commencement of the hire:
and hirer.cash += hirer.hireCharge@pre(v, period)

-- and the customer’s assets are depleted by the same amount:
and cust.cash –= hirer.hireCharge@pre(v, period)
)

Notice that nothing is said about the meaning of rent if the precondition is false. There
might be another description of this use case elsewhere that covers that eventuality; but if
there isn’t, then we are saying nothing about what that might mean. Because we’re
describing rent and not “attempt to rent” or “inquire about renting,” we leave it to a later,
more detailed description to define precisely what happens when a nonmember demands
to rent a video. It’s part of the value of the postcondition approach that it allows you to
paint the big picture, leaving the less important detail until later.

We could have modeled the hire charge as a per-day rate and multiplied it by the length
of the hire. But doing it this way leaves the charging scheme open, allowing for reductions
for longer rentals.

Figure 14.14 Refinement of rent.

Video Store Customer

Video

rent

0..1
0..1

0..1

reserve

cancel

call

hire

return

Chapter 14 How to Build a Business Model 575
14.4 Video Business: Use Case Refinement

Deciding we’re interested in looking into one of the preceding use cases in further detail—
let’s choose rent as an example—we can show how it breaks into smaller constituents. The
entire business of renting may involve reserving beforehand. So we could think of a rental
as possibly reserving, followed by hiring and returning (see Figure 14.14).

The diamond indicates the relationship between an abstraction and its more-detailed
constituents; it can include annotations such as multiplicity. Here it states that some com-
bination of the constituent actions can be used to accomplish a complete rent; but we have
yet to detail exactly how and in what order. This is only a summary diagram.

There may be other actions not mentioned here that can also be composed to make a
rent; and these constituents may also be used in some other combination to make other
abstract use cases. The constituent actions have their own participants, which we could
have shown here or separately. They generally intersect with, or at least are mapped to, the
participants of the abstract use case.

The relevant part of the informal business description is as follows.

Rq 3 Members can reserve a video for rent if all copies of it are currently hired. When a copy

of the video is returned, the member will be called and the copy will be held for as long as three

days, after which the reservation will be canceled if not claimed.

To show the possible sequences of constituent actions and to specifically define which
sequences correspond to an abstract rent use case, we model Rental as an object that goes
through a sequence of states. In the transitions, s, v, c, and d refer to a store, video copy, cus-
tomer, and rental period (see Figure 14.15). Frequently, such a reified action exists in the type
model as an actual object, such as a progress record.

Round-cornered boxes are states, which can have substates; black dots are starting
points. Arcs are state changes; they are labeled with the actions that cause them. The

Figure 14.15 Refinement sequence for rent.

waiting

reserved

return(v)

t+3<today
returned

return(v)
cancel_reservation

hire(s, c, v.title, d)

hire(s, c, v.title, d)

purge [c.balance=0]

call(c)
/t=today

reserve(s,c,v.title)
[s.members→

	 includes (c)]

Rental (s: Store, c: Customer, v: Video, d: Period)

to_collect

held

Reserve

out

remind
[date>due]

Return

^ rent (s, c, v, d)

576 PART V HOW TO APPLY CATALYSIS
square brackets are guards: the transition happens only if the guard is true. A forward slash
(/) marks a postcondition. This diagram formally documents an action sequence refine-
ment; any sequence of detailed actions starting from a top-level and ending with ^rent
constitutes an abstract rent use case.

14.4.1 Refined Model
We should write down descriptions of the more-detailed actions; in this case we would
likely still call each finer-grained action a use case. To begin with, let’s keep it relatively
informal, extending the dictionary with action definitions.

• reserve (VideoStore, Customer, VideoTitle) (At this point, we notice that there is a dis-
tinction between individual copies of a video—objects of type Video—and titles or cat-
alog entries.) This use case represents the reservation of a given title by a member of a

store. The title must be available at that store. The reservation will be recorded pending

the return of a copy of that title to the store.

• return (Video) The return of a copy to its owning store. If there is a reservation for that
title at that store, it will be held for the reserver to collect; otherwise, it goes back on the

shelves. The hire record is marked “returned.”

• call(VideoStore, Customer, Video) Applies when a returned Video has been held for
this reservation. The reserver is notified by telephone that the Video can be collected.
The reservation record is date-stamped, and, if the member has not picked up the copy

within a fixed time, the reservation may be canceled.

• hire(VideoStore, Customer, VideoTitle, Period) A member takes away a copy of a par-
ticular title for an agreed period. If this customer had a reservation for this video and

there is a copy held, then that copy should be the one taken. It makes sense only if there

is a copy on the shelves beforehand or a held copy. A record of the hire is kept.

• cancel_reservation(VideoStore, Customer, Video) Occurs when the store becomes

aware that the customer no longer wants the video. If a copy has been held, it is reallo-
cated to another reservation or put back on the shelves. The reservation is deleted from

the records.

The distinction between Videos (individual copies) and VideoTitles has now become

apparent. It gets documented together with an invariant (see Figure 14.16).

– VideoTitle The set of individual Videos having a particular title.

– VideoStore::catalogue The set of VideoTitles known to a VideoStore.

Figure 14.16 Clarifying video title and copy.

Video Store

inv VideoStore:: catalogue.stock→includesAll(shelfStock)

* stock

*
*

shelfStock

*

Video Title

Video

catalogue

Chapter 14 How to Build a Business Model 577
– VideoStore::shelfStock The set of Videos currently available for hire. A subset of
the total stock of all titles.

We could also draw pictures showing the participants in each use case, duplicating the
dictionary entries for the use cases. In practice, this seamless switching between text and
diagrams may or may not be supported by particular tools.

14.4.2 Formalized Refined Use Case Specs
Looking again at the preceding spec of reserve, it’s clear that we must represent the idea
of a reservation in the model (to be able to state that the use case creates a record of one).
The same thing applies to rentals. In fact, there may be some advantage in regarding these
two records as two states of the same thing; then it will be easy to include any initial reser-
vation as being part of the history of a rental.

A useful pattern here is Action Reification (see Pattern 14.13). We’ll reify the use case
as Rental but preserve the distinct idea of a Reservation as a state type (see Figure 14.17).

Now the finer use cases can be expressed more formally:

use case reserve (store:VideoStore, cust:Customer, title:VideoTitle)
pre: store.catalogue→includes (title) -- The title must be available at that store,

and store.members→includes (cust) -- the customer must be a member
post: store.rentals→includes (

 Reservation.new[reserves=title and customer=cust and copy=null])
--There is a new Reservation in the store whose title and customer are as requested;

Notice that we are still talking about the interactions between the real-world objects here.
The Rental is not an object in the store’s computer system but rather is an abstraction rep-
resenting the agreement between the parties.

Notice also that the postcondition restates (perhaps in more detail) what is shown in the
state chart, given an interpretation of the states in terms of the model. This reminds us that

Figure 14.17 Using state types for a rental.

reserves

held 0..1 currentHire 0..1

*

*Video Store Rental Customer

VideoTitle

Video

copy copy

*

Reservation CurrentHire PastRental

rentals

*

copy

0..1

578 PART V HOW TO APPLY CATALYSIS
we should never write a state chart without defining the states in terms of the model
attributes.

inv Rental::
reserved self:Reservation -- reserved state is a Reservation state type
and waiting = (reserved and copy=null) -- waiting means reserved with no copy
and (held or to_collect) = (reserved and copy<>null) -- other substates

-- we’ll need a boolean attribute to distinguish held from to_collect
and out = self:CurrentHire -- ‘out’ state is a CurrentHire state type
and hired = (out and date=<due) -- substates of ‘out’
and overdue = (out and date>due)
and returned = self:PastRental -- the returned state

Continuing with the other use case specs, return can be specified separately for its two
effects on the state chart (of two separate Rentals):

use case return (v:Video)
pre: v.currentHire<>null -- v is rented out
post: v.currentHire@pre : v.pastRental -- the rental is now part of v’s past

use case return (v:Video)
pre: v.title.reservation<>null and v.reservation.waiting

-- v is a copy of a title that is the subject of a Waiting Reservation
post: v.title.reservation[waiting@pre and held and copy=v]→size = 1

--Of the resulting set of reservations for this title, there is exactly 1

-- that was waiting and is now held for this video

The spec of hire can conveniently be split into a general part and two effects: one for
hiring based on a reservation and the other without a reservation.

use case hire (store:VideoStore, cust:Customer, title:VideoTitle, period:Period)
pre: -- title from catalogue, and customer among members

store.catalogue→includes (title) and store.members→includes (cust)
post: -- an available video copy of the title has been hired by the customer

 (Video→exists (v | v.title=title and v.currentHire@pre = null
and v.currentHire.videoStore=store

and v.currentHire.customer=cust
-- either based on a reservation, or without a reservation
and (hireFromReservation (store, cust, title, video)
 or hireFromCold (store, cust, title, video))

-- we hire the video kept for this reservation
effect hireFromReservation

(store:VideoStore, cust:Customer, title:VideoTitle, video:Video)
= (title.reservation@pre <> null and title.reservation@pre.copy=video)

-- we hire the video without a reservation
effect hireFromCold

(store:VideoStore, cust:Customer, title:VideoTitle, video:Video)
= (title.reservation@pre = null)

Canceling a reservation clears it from the ken of customer, store, and the video:

Chapter 14 How to Build a Business Model 579
use case cancel_reservation (r:Reservation)
post: (r.copy@pre <> null implies r.copy@pre.held = null) -- any held copy is released

and r.videoTitle@pre.reservations –= r -- remove r from reservations for its title
and r.videoStore@pre.rentals –= r and r.customer@pre.rentals –= r

We omit further detailing of these use cases and coverage of other subject areas.

580 PART V HOW TO APPLY CATALYSIS
Pattern 14.13 Action Reification

This pattern supports systematic progression from succinct abstract actions (or use cases)
to detailed dialog, supporting the strategic aim to expose the most important decisions up
front and keeping reliable traceability to the details.

Intent
A sequence of action occurrences can often be seen as a group with a single outcome,
which can be documented with its own postcondition. (This sequence is not necessarily
contiguous—there may be other unrelated actions in between them.) Conversely, when
you’re specifying a system, you should omit detailed protocols of interactions so as to
understand overall effects.

Example
Consider the transaction of obtaining cash between a customer and an ATM. It has a clear
postcondition, is often mentioned in everyday life, and can usefully be discussed between
ATM designers and banks. The detail of how it happens—log in, select a service, and so
on—can be deferred to design and may vary across designs.

Terms
The finer actions refine the abstract one, and the relationship is documented as an action
refinement consisting of a model refinement and an action refinement sequence. Many
refinements of one action may be possible.

A sequence constraint may govern actions, stating the possible sequences; it may be
expressed in the form of a state chart. Of all possible sequences of finer actions, only some
may constitute an occurrence of the abstract action; for example, the card reader and ATM
keys can always be used, but only some sequences constitute a withdraw action. An action
refinement sequence relates finer sequences to specific abstract actions, and can be
expressed in the form of a state chart.

Strategy
Model the abstract action as an object—reify it. Implementations are not constrained to

follow models, but refication often corresponds to a useful object.

A B
Action

action(x)
a

b

A B
a * * b

fa1

fa1

fa1

fa2

fa2

fa3

fa3 fa3 ^action

Action
x

	Chapter 14 How to Build a Business Model
	14.1 Business Modeling Process Patterns
	Pattern 14.1 Business Process Improvement
	Intent
	Considerations
	Strategy
	Benefit

	Pattern 14.2 Make a Business Model
	Intent
	Considerations
	Strategy

	Pattern 14.3 Represent Business Vocabulary and Rules
	Intent
	Strategy

	Pattern 14.4 Involve Business Experts
	Intent
	Strategy

	Pattern 14.5 Creating a Common Business Model
	Intent
	Considerations
	Strategy

	Pattern 14.6 Choose a Level of Abstraction
	Intent
	Strategy

	14.2 Modeling Patterns
	Pattern 14.7 The Type Model Is a Glossary
	Intent
	Considerations
	Strategy

	Pattern 14.8 Separation of Concepts: Normalization
	Intent
	Strategy

	Pattern 14.9 Items and Descriptors
	Intent
	Strategy

	Pattern 14.10 Generalize and Specialize
	Intent
	Considerations
	Strategy

	Pattern 14.11 Recursive Composite
	Strategy
	Examples

	Pattern 14.12 Invariants from Association Loops
	Intent
	Motivation
	Strategy

	14.3 Video Case Study: Abstract Business Model
	14.3.1 � Informal Description of Problem
	14.3.2 � Concept Map
	14.3.3 � Formalized Model
	14.3.4 � Subject Area: The Customer-Business Relationship
	14.3.5 � Dictionary
	14.3.6 � Use Case Actions: Precise Specs
	14.3.7 � Preconditions and More Modeling

	14.4 Video Business: Use Case Refinement
	14.4.1 � Refined Model
	14.4.2 � Formalized Refined Use Case Specs
	Pattern 14.13 Action Reification
	Intent
	Example
	Terms
	Strategy

