
 Chapter 16 How to Implement
a Component

To implement a component means to devise a partition into smaller components and to
define (a) the behavior of each one as a type and (b) the interaction between the smaller
components that realizes the originally specified behavior.

There are many considerations to partitioning the components, with trade-offs on flexi-
bility, reuse, and performance. This chapter discusses these trade-offs and provides a set of
patterns for making these decisions.

To claim that we have implemented a specification, we must also document how the
design meets the spec: Retrieve the specified model from the design and map design
action sequences to abstract action specs. This chapter also outlines how to document this
refinement.

16.1 Designing to Meet a Specification

The Catalysis refinement techniques make it possible to layer the design process so that
the decisions that have the most far-reaching effects are clarified and are taken before the
more trivial ones. A significant boundary in this layering lies between specifications of
behavior (characterized by types) and descriptions of how that behavior is achieved (char-
acterized by collaborations).

This chapter is about how you design a component to conform to a given type (behav-
ioral spec). Again, it might be a complete suite of software, a component part of such a
system, or a small object within the software. Or perhaps it is a mechanical system or
human organization that you have decided to design using object-oriented methods (in
which case, let us know how you get on!).

The spec might also be only a partial one: the view seen by an external actor through a
particular interface.
639

640 PART V HOW TO APPLY CATALYSIS
The principal objectives to be met are as follows.

• Conform to the spec; we have this in common with all methods of software design.

• Build from well-decoupled components; this is a particular strength of object-oriented

design.

• Retain precise traceability from spec to code; this is a speciality of the more serious

development methods.

• Balance all the preceding within a design process that takes account of different devel-
opment circumstances; this can be achieved with Catalysis.1

Decoupling tends to introduce much more separation between concepts than is typi-
cally found in an analysis. For example, any aspect of an object’s behavior that could con-
ceivably be varied tends to get delegated to a separate plug-in module. Thus, we end up
with many more types of objects than were mentioned in the specification. Nevertheless,
our refinement techniques (see Chapter 6, Abstraction, Refinement, and Testing) enable us
to keep the traceability between the two models.

1. If you want us to write your advertising copy for you, we are very affordable.

Chapter 16 How to Implement a Component 641
Pattern 16.1 Decoupling

This pattern reduces the dependencies between parts of the design to make them able to
function in many configurations.

Intent
This pattern is useful in creating a design of any kind, in which dependencies between
parts must be reduced.

Considerations
Decoupling means minimizing the dependencies between the different pieces of a design.
The more coupled a piece is to others, the less easy it is to reuse in a different context
because it would have to be redesigned to work with its new neighbors. Creating any
design from decoupled parts means that we can design new ones more rapidly, because we
don’t have to start from scratch. The designers of a new lamp, printer, phone, kitchen, or
car does not begin by considering a lump of raw metal.

Work of Generalization. Reuse extends from simply calling the same routine from dif-
ferent parts of a program to publishing a design on the Internet. Whatever the scope, some
work is necessary to generalize the design, as we discussed in Section 11.1.4, A Reuse
Culture.

Importance of Interfaces. At one time, modularity in the software world was principally
motivated by the need to divide a big job into manageable tasks. The interfaces of your
module worked with the modules of the people in the neighboring cubicles; it was easy to
discuss any issues about the interfaces. In a culture that reuses the pieces, you are unlikely
to know all the components that yours will connect to: You must therefore be much more
careful about your interface definitions (and about reading those of others).

Strategy
Coupling is introduced when one piece of a design mentions another by name: another
class, another procedure or method, a variable in another class, or even (heaven forfend) a
global variable. Explicit mentions of other classes may come in parameter or variable dec-
larations; in type casts; when objects are created explictly of a particular class; and when
one class inherits from another.

Therefore, you should avoid accessing variables outside your own class; always go
through access methods instead and try to provide higher-level services instead of only
get_ and set_ methods.

Separate concerns into different objects (and abstract objects; see Section 6.6, Spread-
sheet: Object Refinement). Compose those objects together to provide the overall behav-
ior. In general, prefer composition and black-box reuse over subclassing.

642 PART V HOW TO APPLY CATALYSIS
Minimize the number of explicit mentions of other classes. Refer to other objects by
their types or interfaces. When you need to instantiate another object, use a factory
method rather than directly name the class to instantiate.

Minimize interfaces—that is, reduce the number of methods within each class that are
used by another.

Draw dependency diagrams (see Section 7.4, Decoupling with Packages) between
operations, classes, packages, and components. Study the package-level dependencies and
seek ways to refactor across packages to reduce coupling.

Chapter 16 How to Implement a Component 643
Pattern 16.2 High-Level Component Design

In this pattern, you design large-grained components and connections.

Intent
Define component boundaries; you have a type specification of a system that you are to
design.

Considerations
Object-oriented design is about decoupling; the major aspects of the way a component
functions and connects to its neighbors can be separated into different subcomponents.

Strategy
Identify each major interface to the world outside the component: user interface, hardware
monitor or drivers, and links to other components. This process provides a horizontal lay-
ering of the component.

Consider whether a façade is required for each of these interfaces (see Section 6.6.4,
Object Access: Conformance, Façades, and Adapters, and Pattern 16.4, Separating
Façades). Each façade is a subcomponent in its own right. If the interface is to another
component within the same piece of software, the answer may be no: The interaction is
direct. If the interface is to a person, the façade is a UI of some kind.

Reify the major continuous use cases (see Section 6.5.7.1, Reifying Actions, and Pat-
tern 16.3, Reifying Major Concurrent Use Cases) that the system supports—often corre-
sponding to business departments—such as loan books and manage stock. Each of these
use cases can become a component that itself can be further reified. This approach pro-
vides a vertical partitioning of the component.

In deciding the functions of each major component, consider what can be most easily
implemented with existing components or frameworks.

Consider whether the components should be in separate machines or separate lan-
guages. (See Pattern 16.5, Platform Independence.)

Choose the infrastructure components that will constitute your technical architecture
(see Pattern 16.7, Implement Technical Architecture).

Use Pattern 16.8, Basic Design, to sketch interactions between subcomponents. While
drafting a basic design, also apply appropriate design patterns (see Section 16.2, Detailed
Design Patterns) to improve decoupling.

Specify each major component, particularly the core business components. Recurse
this procedure on each subcomponent until the interacting subcomponents are simple
classes.

644 PART V HOW TO APPLY CATALYSIS
Pattern 16.3 Reifying Major Concurrent Use Cases

This pattern describes recursive use-case-driven design.

Intent
The aim is to divide a large component into its major functional blocks, by use case.

Strategy
A business can be considered to comprise several large-scale use cases, each of which can
be supported or run by a computer system. Frequently, the importance of the major use
cases has already been identified, and they have been reified as business departments.
Usually, these functions operate continuously and are interconnected in some way (see
Figure 16.1).

The major use cases can now be reified to become objects that support those use cases.
In this case, the use cases are complex, so the corresponding objects will be large enough
to be refined separately. They might be set up in different computer systems. We can also
show the actions whereby the objects interact with each other (see Figure 16.2).

Each of these objects should now be designed as a component in its own right, prefera-
bly starting with a specification. Each object will have its own model of what a book is

(see Section 10.11, Heterogenous Components). Each of them has one façade to a human
user and another façade to the other component.

Figure 16.1 Concurrent business functions (use cases) interact.

Loan statistics
stock available

Member

Member
StockKeeper

Desk Clerk

Library Employee

run library

lending books managing stock

Chapter 16 How to Implement a Component 645
These components could be distributed among various host machines.

Figure 16.2 Reified use cases into large-grained objects.

Book Loan Support

Library Management System

Stock Management Support

Member Desk Clerk

lending books

loan stats update

book stock update

StockKeeper

managing stock

646 PART V HOW TO APPLY CATALYSIS
Pattern 16.4 Separating Façades

Separate the GUI (and other layers that interface externally) from the core business logic.

Intent
The objective is to achieve horizontal layering, separating business from technology com-
ponents.

Considerations
One principle of OO design is that you mirror the business types in the software. But in addi-
tion to the business functions, there are practical things to be dealt with, such as the presenta-
tion of pictures on the screen or the interpretation of mouse clicks or of signals from other
machines. It’s possible for a naïve designer (or a mediocre visual interface-building tool) to
get the user interface well mixed with the business logic; but it is not recommended. We may
wish to change the GUI without changing the business, so it is preferable to have everything
separate.

The GUI involves more than one class—usually several classes for every kind of shape
and display and every displayed business object. So we are talking here about another sub-
stantial component. Considerations that apply to the user interface also apply to interfaces
to other external objects, so an interface to a separate component would also use a façade.
Once these façades have been separated out, we are left with a core component in the mid-
dle that reflects the business types and represents the business logic in its code.

Strategy
Take each of the major components identified from major use cases—in a simple system,
there may be only one—and separate out subcomponents, each of which is concerned with
an interface to an external object (user, hardware, other software). Figure 16.3 shows an
example.

Notice that each component could be broken down further if required. This is object
refinement (as described in Section 6.6, Spreadsheet: Object Refinement).

Each component could be in a separate machine if required (as in client-server and the
Web).

Each of the components has its own model of objects it is interested in. They include
static types and reified actions (use cases). Examples are an object controlling the inter-
action with a user or, in the business logic, a long-term action such as loan.

Façades as Transparent Media. The need for a façade is largely to provide a way for
messages to be sent across system boundaries. For example, we can define a message in

Chapter 16 How to Implement a Component 647
the book loan core called reserve(title, member) in which each of the parameters is a
pointer to an object of the appropriate type.

Now consider how that gets invoked. If the invoker is another piece of software in the
same platform, the procedure call mechanism deals with the message send; memory
addresses represent the object references. But if the invoker resides on another machine,
some kind of remote method invocation must be employed; instead of memory addresses,
some other kind of identifier must be used for the objects.

The situation is even worse when the invoker is a person. There is no one-shot way for
a user to invoke a subroutine with multiple parameters: You must go through some inter-
action that gathers the information one piece at a time. This is half of what the GUI is for;
the other part is the presentation of the states of core objects, something that is also a job
of translation.

At the other end of the communications medium—be it a wire or screen + eyeballs +
keyboard + fingers—there is another façade doing the translation in the opposite direction.
In this way, the cores of the two components communicate2 (see Figure 16.4).

Façades between Components in the Same Platform. Sometimes there is no need for a
façade: The two components send messages and keep pointers directly to each other.
Because each component may be an abstract object (see Section 6.1.7, Object Abstrac-

Figure 16.3 Possible façades.

2. This idea is similar to that of the OSI protocol stacks used in communications.

Interface components
contain objects about
communications

GUI components
contain objects
about presentation
and small use cases

Core components
mirror business
types

Display of Book for Member

Graphical User Interface

for Member inquiries

Book Loan Support

Inquiry transaction manager

Display of Book for Clerk

Graphical User Interface

for Desk clerks

Reified desk action

Missive about
Books

Interface to Stock

Management Support

Reified action

about stock control

Reservation

Book Loan Core

Book Title

Book CopyMember Loan

648 PART V HOW TO APPLY CATALYSIS
tion), it may be that there is no single memory address representing each component: The
two have numerous pointers directly between their consitutent objects.

Figure 16.4 Layered communication via façades.

Façade1

Core1 Core2Effective interaction

Façade2

Chapter 16 How to Implement a Component 649
Pattern 16.5 Platform Independence

Localize, in one component, ideas that are dependent on a particular platform.

Context
By “platform,” we mean the technology that underlies the execution of your design. Here
are examples:

• Programming language, operating system, runtime environment: Java, C++, Windows,
UNIX, Smalltalk, Forté, Javascript on Netscape, workflow systems, and so on

• Persistence: How the state of the component is preserved for any length of time (file

systems, databases)

• Distribution mechanisms: COM, CORBA, RMI, TCP/IP, and other technology (but
consider which component is run on which machine)

All these infrastructure questions can be separated from the main issues of design. Out-
side their own layers, they should not make much difference to the design.

Strategy
Adopt techniques that keep as much of your design and code as possible independent of
these layers.

This means that you should design using an insulating layer or virtual machine of
objects in which the differences between one platform and another are concentrated. In
this way, porting means changing only that layer. Also, keep the design well documented.
Although porting would mean rewriting the code, it could be done quickly from the exist-
ing design.

Examples
The Java language provides a virtual machine that runs the same on all hardware.3 The
public GUI classes in the Java library are the same for all hardware, but they are façades
for a layer of peer classes that adapt to the local operating system.

3. Never quite true, though, eh?

650 PART V HOW TO APPLY CATALYSIS
Pattern 16.6 Separate Middleware from Business
Components

The point of this pattern is to separate business components from others. Wrap legacy sys-
tems behind a layer of objects representing the business concepts. Transition from custom
infrastructure solutions to standardized middleware, enabling integration and extension of
disparate systems in a way that is shielded from technology changes.

Encapsulate persistence mechanisms in a small number of platform-dependent objects
with platform-independent interfaces. Separate out technology-dependent infrastructure
components that serve primarily to connect other components, such as message queues,
transaction servers, ORBs, and databases.

Intent
The objective is to build new business components that can integrate with legacy systems
and across disparate systems while shielding the system from technology changes.

Considerations
The legacy system might be only a file server or a relational database. Or it might be a
higher-level component, such as a spreadsheet with an API, or a complete application such
as a reservations manager.

It may be “legacy” in the sense that there is a lot of code and data already built for a
given application or only in the sense that compatibility constraints force the use of more-
traditional technology such as RDBs.

Integration of disparate systems involves a lot of infrastructure support: communica-
tion, coordinating distributed transactions, load distribution, and shared resource manage-
ment. The costs of developing infrastructure components of high quality would dominate
a typical large business project compared with that of the actual business logic involved.

Strategy
Make a layer of business objects. In a client-server system, they typically reside on the
server (although this strategy is independent of their location). The business objects corre-
spond closely to the types found in the business model and deal with users’ concepts,
roles, departments, and so on (see Figure 16.5). As the business changes, it is this layer
that is updated.

The GUI is a separate layer. In contrast to an older client-server (two-layer) architec-
ture, the user interface should deal only with presenting business objects to users and
translating user typing, mouse clicks, and so on to business object commands. Business
rules should be embodied within the business objects.

The underpinning or old technology of database, communications, and so on is repre-
sented by a set of wrapping objects that drive them.

Chapter 16 How to Implement a Component 651
A variety of techniques exist for driving legacy components. You can use the API if
you’re fortunate enough to have one, or you can generate and send SQL or similar queries
if it is a database component. For a host-based terminal application, you can use screen-
scraping—pretend to be an old-style user terminal. These techniques should be encapsu-
lated in middleware so that other components are not too dependent on the legacy commu-
nication. Whenever possible, buy the middleware components.

To use such a component accurately, it is helpful to build a model of it.

Benefits
The first benefit is platform independence. The business objects can be written indepen-
dently of the legacy systems and can be ported. Using middleware, you can integrate new
application components with existing application code and purchase components to build
seamless business systems.

In addition, the software tracks business reorganizations. As usual in OT, the strength
of reflecting the business organization in the software is that it can readily be rearranged
when the business is reorganized.

Software location also tracks business location. Distribution of the objects among hosts
comes after and is independent of object design (see Pattern 16.12, Object Locality and
Link Implementation). This applies whether there is a central server or several servers or
whether the business objects are hosted on server machines or clients or in their own
machines. The strength of this independence is that the hosting can easily be rearranged—
dynamically, if appropriate—as people and departments are relocated.

Figure 16.5 Middleware and business components.

Object
wrapper

Non-object
technology

Business model

Client interface Business component
can track business
model more easily

Legacy systems

Middleware

Object
wrapper

Non-object
technology

652 PART V HOW TO APPLY CATALYSIS
Pattern 16.7 Implement Technical Architecture

In this pattern, you document the selection of all infrastructure components and describe
how they relate to the physical and logical architecture to be used. Implement the support-
ing pieces as early as possible and build an early end-to-end architectural prototype.

Intent
Reduce feasability and scalability risks of technical architecture.

Considerations
Much of the complexity and development cost of a large system can come from issues
related less to the business logic than to technology factors: database access, general query-
ing capabilities, message passing paradigms, exception signaling, interpreters for command
languages, logging facilities, a framework for startup and shutdown, user-interface frame-
works, and so on. These factors can be the most important ones in reasonable estimation of
design and development times.

Coherence and maintainability of the system degrade rapidly if different developers
choose their own schemes to solve these technology issues. Large-scale performance and
scalability are determined primarily by how the components are partitioned and distrib-
uted across machines and by the nature of communication across machines.

Strategy
Make the design, implementation, and rules for using any infrastructure components a
high priority. Separate distinct technology pieces.

• Presentation: Select a standard mechanism for all user-interface presentation—for
example, MVC or document-view—and an implementation to go with it.

• Business: This category covers application components that partition application logic

and business rules and collaborate to achieve the required business function.

• Middleware: This is the communication and coordination mechanism to enable compo-
nents to collaborate across machine boundaries.

• Component technology: This includes the kinds of components and connectors that
define more-expressive modeling and design constructs such as events, properties,
workflow transfers, and replication.

• Data storage and access: This is the database access layer along with a logical layer
above it to coordinate shared access to the data.

• Utility classes: Design and implement other domain-independent services, such as que-
rying, exception signaling, message logging, command interpreters, and so on.

Use package diagrams to show the third-party and library components you will use. If
you use a layered architecture, in which higher layers can call only layers below them, you

Chapter 16 How to Implement a Component 653
can visually structure these diagrams to show the static dependencies corresponding to
architecture layers. Explicitly capture tool dependencies (language versions, compilers, UI
builders) across lower-level packages, introducing virtual packages for these tools if
needed.

Use collaborations to show interactions between large-grained components and stereo-
types or frameworks on the interactions (for example, «SQL», «RMI»).

Document in a package the overall guidelines or cookbook rules, including design and
coding standards, that you want to follow for all these issues and particularly the rules to
follow when adding new features to the system.

654 PART V HOW TO APPLY CATALYSIS
Pattern 16.8 Basic Design

Take each system action and distribute responsibilities between collaborating internal
components. Begin by assuming that there is a class for every type of the system type
spec.

Intent
The aim is to generate classes for coding based directly on specification types.

Context
A component specification has been written. It may come from requirements analysis (see
Pattern 15.7, Construct a System Behavior Spec) or may be a part of the design of something
larger (see Pattern 16.3, Reifying Major Concurrent Use Cases).

The component has been characterized with a type, specifying the actions it can take
part in, in terms of the vocabulary of a static model. Figure 16.6 shows an example. These
actions can later be refined to more-detailed interactions.

Considerations
Basic design is the first attack on a design before any consideration of optimization (see
Pattern 16.13, Optimization) or generalization (see Pattern 16.11, Link and Attribute
Ownership).

Classes, Specification Types, and Design Types. The types in a component’s model are
often called specification types because their reason for existence is to help specify the
component’s actions. A designer could invent a completely different internal structure that
would still conform to the specified behavior as seen by external clients—a decision that
would be justified by performance or other constraints.

Figure 16.6 Type specification to be designed.

Library Management System

action return (book : Copy) pre: book.loan <> null
post: book.loan=nil and [[holdForReservation(book)]]

action borrow (book : Copy, member) pre: . . .

Reservation Book Title

Member Loan Book Copy

*

*

*

*1

1 1

1
1

0,1

Chapter 16 How to Implement a Component 655
When you do a design, you define collaborations that divide responsibility among dif-
ferent types. These are often called design types, meaning that we know we must imple-
ment them at some stage; we indicate this by drawing them with slightly thicker boxes. In
fact, the difference between specification types and design types is not intrinsic nor hugely
important but reflects only the way you use them. You could just as easily use a design
type—that is, one that you happen to possess an implementation of—as part of someone
else’s model.

The distinction between class and type also boils down to how you use it. After some
quantity of refinement and design, you will end up with a type diagram in which all the
actions are localized (that is, there are arrows showing which end is sending and which
receiving), all the associations are directed (arrows showing who knows about whom),
and all the actions have interaction schemes. At that stage, it is natural and easy to trans-
late it all systematically into your favorite programming language. Nevertheless, you
could stoutly maintain that it’s all only a model. But generally, when we draw a box with
directed links and localized actions that have interaction schemes, we’ll refer to it as a
class rather than a type.

Encapsulation. According to the principle of encapsulation, the internal structure of
each unit should be invisible to others. In that way, each unit is designed to depend
only on the behavior of those to which it is coupled. So what’s a unit?

The class (or the object) is conventionally taken to be the
unit of encapsulation. But this isn’t invariably the optimal
solution: It may be useful to have a variable assortment of
state-holding objects within a single design. If there is no
intention ever to separate the design and if the pieces
couldn’t possibly make sense apart and will never be modi-
fied one without the others, then the unit of encapsulation is
sensibly bigger than the object. It makes more sense to
make the unit of design the unit of encapsulation (some-
thing that Java acknowledges by permitting visibility
between classes in the same package).

In any case, it can be difficult to begin a new design
by working immediately with abstract types. It is easier
to design the drawing editor beginning with example
shapes and then generalize, carefully specifying in the
Shape type what you require of any new shapes. Simi-
larly, it’s easier to design a library with books in mind
and then generalize to videos and car rental. Brains
work bottom-up.

Interaction

scheme

for action x

Ideally encapsulated design:
one class uses several types

and each class implements

many types

Class 1

action x Type3

specified

actions

Type 2

Easier but
less flexible

deep design

Class

Class

Class

Class Type

Type

Type

656 PART V HOW TO APPLY CATALYSIS
We have found that it works well to
begin with a large unit of encapsulation
spanning several classes and then gradually
draw the boundaries in. So we typically
design sequences of operations that trace
the flow of control several levels deep
through the object graph. Generalizing is a
subsequent step, which is done by defining
a type for each class and then making it as
general as possible. These then become
cross-package interface specs.

Strategy
Assign each system-level action to an internal object. In another part of the development
(see Pattern 16.4, Separating Façades), the task of interfacing our component to its neigh-
bors was delegated to a subcomponent. We can make some assumptions about how we
will design the façade.

• Presentation of the state of the core to the external world will be handled appropriately

by the façade. It will use observers (see Pattern 16.17, Observer) so that we need not
consider the detail about how things appear on the screen. All we need do is keep the

business objects’ own state right.

• To the core the façade will send messages corresponding to the main actions we identi-
fied for the component as a whole.

• Each message will initially arrive at the most appropriate object in the core, which will
then delegate some of the work to others. This object is called the control object for that
component-level action.

The library is typical of many designs in that each type of external user talks to its
internal proxy: each (real) ::Librarian through an instance of LibrarySystem::Librarian, each
::StockKeeper through an instance of LibrarySystem::StockKeeper, and so on (see Figure
16.7). Logging in establishes these connections via the screen, keyboard, and windows
(each of these pieces of hardware has its software counterpart).

Class

Type

Type

Type

Type

Type

Type

Type

Class

Type

Class

Class

Figure 16.7 Consistent use of proxies.

Real counterpart of —— internal proxy Internal proxy of —— real object

: Business Core

jo:Librarian :Robot

observe

Jo
:Robot

: Façade

to robot
: GUI

Chapter 16 How to Implement a Component 657
Program each system-level action. For each action specified for the component as a
whole, design how its spec will be fulfilled by a collaboration of objects within the com-
ponent. Make the starting assumption that the classes and pointers available are the types
and associations from the component spec’s static model.

To design each action, draw a before-and-after snapshot of a typical component state
for this operation. Do them on the same drawing, with the after links distinguished, for
example, by color. Work from the action spec: Ensure that your before situation satisfies
the precondition.

Work out which operations each object must invoke on its neighbors, beginning with
the head object, to achieve the after situation. To stick to basic design, your messages
should only follow links. Draw them on top of the snapshot. It usually helps to number
them in sequence of occurrence. Also number creations and deletions (see Figure 16.8).

The benefits of encapsulation become clear in this example. Do we really want to chase
all the way down 5 and 6 to see how a book knows its title in this piece of design? See Pat-
tern 16.9, Generalize after Basic Design.

Write stub operation specs wherever the interactions become too deep. For example,
you can write a spec for Title::available (b: Book) and omit all details below 3 in this inter-
action diagram.

Title::available (b: Book)
post book put on hold for one member with needy reservation for title

(needy reservation for title = reservation for title, with no held copy)

Figure 16.8 Interaction design.

3.1.1.1. equal(t)
3.1.1. title(t)

3.2. holdFor(m)

3.1. need?(t) → m

held

held

loaned

reserved

t: Title

1.	Book informed that it is returned

2.	Book removes loan link to Member
3.	Book informs title that it is available

		 3.1 Title asks each reserving member if it needs the book

			 3.1.1 Member checks books already held for same title

				 3.1.1.1 Book checks if same title

		 3.2 Title tells book to hold for particular member
4.	Book sets up the held link for that member

3. available

return

1. 4

2

: Book

: Book

Chris : Member

Pat : Member

Jo : Member

658 PART V HOW TO APPLY CATALYSIS
If there are any different cases described in the postconditions not dealt with by the
sample situation you have illustrated in the snapshot, repeat for the other cases. (With
experience, of course, you can often skip all the tedious drawing. However, it’s good to do
some.)

It may be useful to redraw the design as an action sequence diagram (see Section 4.7.3,
Sequence Diagrams with Actions). This technique shows the sequence more tidily and
makes it easier to see how to move responsibilities “sideways” from one object to another.
The role-activity variation also shows potential interference clearly (when one object is con-
currently engaged in several threads).

When you’re programming, follow the principles of coherence (see Pattern 16.10, Col-
laborations and Responsibilities): assign responsibility where it is appropriate.

Review Responsibilities and Collaborations for Each Class. After you program each
system-level operation, each of the classes on which operations are invoked has a list of
operations it is required to do. Document these operations as detailed in Pattern 16.10,
Collaborations and Responsibilities, and review.

Consider Ownership of Each Link. That is, who knows about it? See Pattern 16.11,
Link and Attribute Ownership.

Decide Distribution. That is, where does each object reside? On which machine? On what
storage medium? In which major component? This can be done independently of the design.
See Pattern 16.12, Object Locality and Link Implementation.

Decide How Objects, Links, and Actions Are Implemented. This is highly depen-
dent on the answers to the preceding question. Each component may have its own internal
representation of objects: as C structures, as Java or C++ objects, or as files or database
records. Links may be memory addresses, URLs, CORBA identifiers, database keys, or
customer reference numbers, or they may be refined to further objects. Actions may be
further refined and ultimately be function calls, Ada rendezvous, signals, or Internet mes-
sages.

The implementation of links typically induces further message sends. For example, set-
ting up or taking down a two-way link requires a housekeeping message (see Pattern
16.14, Two-Way Link).

The head class of the design is one possible implementation of the type represented by
the system spec. The implementation class should have a separate name. If there is likely
to be only one implementation, a reasonable convention (following [Cook94]) is to call
the type ILibrary and the class CLibrary, for interface and class. The refinement relationship
should be documented in the dictionary. (In Java, class CLibrary implements ILibrary.)

Collate Responsibilities of Each Class. The actions in which each class takes part can
now be listed. Each one can be specified (if only informally).

Chapter 16 How to Implement a Component 659
Generalize. Push encapsulation toward each class being independent of all the others.
Each action diagram should go only one level: the actions used by any method should
depend only on the specifications of others.

It doesn’t make much sense to encapsulate certain classes separately: you know that
they will always go together. For example, how a current user selection is represented
depends heavily on the design of the document. So, for example, the TextDocument and
TextSelection classes will generally form part of one package and can be coded in a single
Java package, C++ file, and so on.

On the other hand, an Editor may be able to handle many kinds of Document, so it
makes sense to define a Document design type, with all the behavior the Editor expects,
and provide several implementations. Defined fully, Document would have a complete
model and operation list just as Editor does.

Reiterate for Each Design Type. The design has now been decomposed, and each
design type can be implemented by designing it or finding a suitable library component.

Coding. Translate the classes and associations into program code.

Benefit
The benefit is that the system is designed to a spec. You can start easy, generalize, and
optimize locally later.

660 PART V HOW TO APPLY CATALYSIS
Pattern 16.9 Generalize after Basic Design

Work with particular cases first and then generalize using decoupling patterns.

Intent
The aim is to achieve good decoupling by re-factoring an initial design.

Context
A draft design has been achieved using Pattern 16.8, Basic Design.

Considerations
There is a tendency for the design to be poorly decoupled after you do basic design. That
pattern works with an overall view, using sequence charts and snapshots to show how
messages propagate through the various layers of objects. But that very advantage works
against encapsulation and decoupling: You are designing each object in a context in which
the other classes are known, and the tendency is to make it work with those specific neigh-
bors.

That does not mean we should throw out basic design or the notational tools that help
it, although that has been suggested in some respectable quarters. We believe that human
brains work best with concrete examples and that you cannot design a generalization with-
out first creating something concrete.

Strategy
Apply generalizations after you complete the basic design. A wide variety of design pat-
terns are directed at generalization and decoupling. Most notable are Pattern 16.15, Role
Decoupling and Pattern 16.16, Factories.

In the library example, we can begin by lending books and then diversify into videos.
Then we can privatize the library and start charging money.

Chapter 16 How to Implement a Component 661
Pattern 16.10 Collaborations and Responsibilities

In this pattern, you document and minimize responsibilities and collaborators.

Intent
The intent is to distribute responsibilities among objects in such a way as to produce a
flexible, coherent design.

Context
The context is action refinement: making decisions that implement or put more detail into
an abstract (set of) actions. This may be part of a computer system design (Pattern 16.8,
Basic Design) or part of the reengineering of a business process (Pattern 14.1, Business
Process Improvement) and may in particular be the engineering of the business process of
which using a computer system is a part (Pattern 15.5, Make a Context Model with Use
Cases).

A collaboration diagram defines interactions between objects. A collaboration is a set
of actions that are related in some way, usually a common goal. Here are some examples.

• The maintenance of an invariant

• Forming a refinement of a more abstract action (involving [some subset of] the same

participants)

• Forming the implementation of an action (in which one object employs the services of
others to fulfill its responsibilities to someone else)

The dictionary details the responsibilities of each type or class.

getValue

update

inv Counterdisplay :: shows=myCount.value

Counter

value

CounterDisplay

shows

Customer

Café

Customer-R1

Café-R1

buy_food select_food
pay

User

Editor

Editor-I

cut

Document

ClipBoard

cut
remove

replace

662 PART V HOW TO APPLY CATALYSIS
Considerations
Each participant in the collaboration should have a responsibility that can be succinctly
stated: “displays integer values” or “sells food” or “represents recently deleted items in an
editor.” The actions should be a small set all of which relate directly to this responsibility.

The more specialized the collaborators of an object—the further down the type hierar-
chy—the less generally its design can be applied and used. The objective is to make the set
of objects with which it will work as wide as possible.

Classes, Types, Design Types, Abstract Classes. The collections of methods for the
actions now form classes. The boxes to which you sent messages without programming
them further are design types: You know what you want them to do but haven’t yet
decided how. The process can be repeated for them later.

Strategy

Document Responsibilities and Collaborators. Record the following in the dictionary:

• The responsibility statement for each class or type

• The collated list of actions and collaborators for each class or type

• The specifications of each action

• The refinement of each action (for example, as skeleton method code)

Localize Actions. A general joint action

represents an interaction between the participant types without
saying who does what. But at this stage, neither of the partici-
pants can be understood independently of the other. Localiz-
ing the action doesn’t by itself reduce this coupling but is a
useful preliminary to generalizing

the sender end (see next point). Decide who is the sender and who the receiver. Mark them
with arrowheads. Any other participants remain as parameters. (Writing the name and sig-
nature of the action within the behavior section of the receiver’s type box is also a way of
indicating localization.)

Minimize Coupling (Dependencies). The list of collaborations should be small. The
well-known CRC technique of detailing responsibilities and collaborations on a single
index card gives some idea of their preferred sizes. If the list is too large, suspect that a
redistribution of responsibilities is required.

For each type, consider whether it is possible for its collaborators to have more-general
types. For example, an Editor might work with Documents of any type (such as Texts)
rather than only Drawings; conversely, a Document need not be driven by an Editor.
Redraw using the more-general types.

Customer Shop

Item

buy

Chapter 16 How to Implement a Component 663
If you wish to focus on one participant type for the
present, you can indicate that this is not the whole range of
possibilities by using an “optional” mark.

In the most extreme case of decoupling, the receiver doesn’t care at all what type the
sender possesses, because the receiver never sends any messages back to the sender. This
implies that the action we’re looking at is never going to be refined further, and it is at this
stage that we usually start calling it an operation or message or function call and expect it
to be coded directly in the program. The sender’s type is then Object, the type of which all
others are subtypes.

Actually, this is not quite true. Even at the message level, there is some dialog, that
depends on the sender’s understanding what it gets back. An operation coded to be
invoked as a function call needs a different sender than one invoked through an ORB or a
dynamic linking system. Asynchronous and synchronous calls are different again. So
strictly speaking, you must always know something about who is calling you, at least to
the extent that you impose some requirements on its proper behavior.

For each type, consider whether the number of its collaborators can be reduced by a
rearrangement of responsibilities. For example, we get the Editor to transfer deleted mate-
rial to the Clipboard rather than get the Documents to talk to the Clipboard at the Editor’s
behest. That avoids the need for the Document (or its designer) to know about Clipboards,
with the benefit that Documents can be reused in other designs where there is no Clip-
board.

Consider the many other forms of decoupling listed in design pattern texts. The decou-
pling results in designs that are easier to pull apart, using the parts as components in differ-
ent contexts. Decoupled designs also are more resilient to change; each interface impedes
the propagation of change.

Person Fruit
eat0..1 0..1

664 PART V HOW TO APPLY CATALYSIS
Pattern 16.11 Link and Attribute Ownership

The aim here is to decide and document the directionality of links.

Context
The context is late-stage design. You have worked out the collaborations (see Pattern
16.10, Collaborations and Responsibilities).

Considerations
A link (or attribute) in an abstract spec or design represents the fact that somewhere,
somehow, there is a member of one type associated with every member of the other type.
The link says nothing about how the types are associated.

There are various possibilities. The most straightforward are as follows.

• Each type knows about the other (see Pattern 6.4, Refinement Is a Relation and Not a

Sequence), something that is frequently represented using a two-way link. Although

simple, this link often results in excessive coupling. A simple measure would be to

decouple using types (see Section 7.4.1, Role-based Decoupling of Classes).

• One type knows about the other, but not vice versa. This is usually the preferred solu-
tion: It layers the dependencies and makes testing simpler.

• Neither type knows about the other, but a third object keeps a mapping between them.
When used systematically, this approach can be used to make objects appear more

extensible: Its basic implementation is already defined, but an external mapping helps

define extensions to its properties and behaviors.

• No one stores the information directly, but it can be computed.

A link is needed in a particular direction if an object must retain a reference to another
across its public methods—for example, it must send a message down that link—or must
keep the identity of an object for someone else—for example, as a list does.

Strategy
Notice that this issue is separate from link implementation, which has to do with Pattern
16.12, Object Locality and Link Implementation.

Chapter 16 How to Implement a Component 665
Pattern 16.12 Object Locality and Link Implementation

Locality of an object can be decided independently of basic design, employing appropriate
patterns to implement links and messages crossing locality boundaries. Locality applies to
hosts, applications, and media.

Intent
Decide where an object will reside and whether and how it will move around.

Context
This work is done after object design (see Pattern 16.8, Basic Design) and link ownership
(see Pattern 16.11, Link and Attribute Ownership).

Considerations
Essentially, these issues are all the same, or very closely related.

• Which host an object resides on in a distributed system

• Which storage medium and platform an object is in (database, serialized in file, main

memory, on a listing, in a bar code, on a magnetic stripe card, and so on)

• Which application or major component an object is in (in a spreadsheet or word proces-
sor; in a banking application; in a tax authority program)

In each case, we must worry about the following questions.

• How is the object represented in that locality? Can it execute there?

• Does the object move across locality boundaries (for processing or storage or to be pro-
cessed locally for efficiency)? What makes this happen?

• If it crosses boundaries, are there then two copies (for economy or robustness)?

• If there are copies in different localities (temporarily or permanently), how are they

kept in sync (paging or transaction tactics)?

• What are the performance implications of this distribution?

• How are cross-boundary links represented (URLs? keys? reference numbers?)?

• How do actions between objects in different localities work? How are parameters rep-
resented in transit?

• How should we handle different views and capabilities in different localities (for exam-
ple, a picture in a CAD program imported into a word processor)?

• The basic object design should be independent of locality and boundaries and move-
ments. How is this made to work?

666 PART V HOW TO APPLY CATALYSIS
Strategy
Use standard frameworks for distribution, including CORBA, Active-X, and COM+.

Because these decisions can be taken late, the basic design is changed very little by dis-
tribution across localities in a functional sense. This means that a distributed system can
first be implemented on a single machine as a prototype. However, the performance impli-
cations can be significant, so, depending on the amount of interaction with the object and
the bandwidth of the communication medium between them, architectural prototypes
should be built early to validate both locality and responsibility decisions.

Chapter 16 How to Implement a Component 667
Pattern 16.13 Optimization

Apply localized refinements to make the application run faster.

Intent
The objective is satisfactory performance.

Context
Optimization should be undertaken after object design (see Pattern 16.8, Basic Design)
and link ownership (see Pattern 16.11, Link and Attribute Ownership). Juggle with object
locality (see Pattern 16.12, Object Locality and Link Implementation).

Object-oriented programs typically run 25% slower than their traditional counterparts,
and they take up more space. And the more they are engineered for reuse, the slower they
run. The cause? It’s the dynamic name resolutions, and it’s all those message sends
between objects politely observing their demarcation rules, carefully deferring to the
responsible person for each part of the job like a bureaucracy gone mad. (Is this an argu-
ment against applying the OO paradigm to business processes?)

Considerations
See Pattern 6.2, The Golden Rule versus Other Optimizations—optimization balances
against flexibility.

Strategy
Eighty percent of the time is spent on 20% of the code. The majority of the code can mir-
ror the business model: After running profiling tools to ascertain performance bottlenecks,
concentrate on the worst 10% of the 20%.

Initial optimization should usually be focused on the levels of algorithmic improve-
ments while trying to retain encapsulation. Beyond that, optimization is largely a matter of
specialization and coupling—making one piece of code more dependent on its neigh-
bors—and of technology-level optimization—improving locality and paging behavior,
reducing network traffic, and tuning the database structures.

• Direct access to data; use friends (C++) or in-package access (Java)

• Less delegation; bring more of the job within one object

• Use static data structures

• Make standard optimizations as for conventional code

Object locality (see Pattern 16.12) is also an issue. Various patterns, such as caching
and proxies, can be used to bring an object closer to the point of application while mini-
mizing overhead and impact on the design.

668 PART V HOW TO APPLY CATALYSIS
Benefit
A basic design built directly from the business model can very quickly be constructed and
run as a prototype, feeding back to the requirements analysis process. Optimizations can
be kept as a separate task.

16.2 Detailed Design Patterns

There is a rapidly growing literature on design patterns. Patterns enable designers to dis-
cuss their designs clearly with their colleagues and to convey sophisticated ideas rapidly.

Chapter 16 How to Implement a Component 669
We believe that all programmers should have a basic vocabulary of design patterns, and
we consider it inexcusable for a college now to release a computer graduate into the world
without this knowledge.

This section highlights some essential patterns and shows how they serve the major
objectives of decoupling. References to more-detailed discussion on these patterns can be
found in the Bibliography.

670 PART V HOW TO APPLY CATALYSIS
Pattern 16.14 Two-Way Link

In this pattern, you make the participants in a two-way link responsible for linking and
unlinking.

Intent
In the latter stages of design, it is decided to implement a single abstract association as a
pair of pointers:

Various messages sent by other parties to A or B may cause instances of the association
to be created or destroyed, adding or removing B instances from an A instance’s list.

Objective
The aim is to ensure that the pointers are always reciprocal. Although the membership of
the list may change, every item on an A instance’s list must have a ~list pointer back to that
A instance.

(a:A:: a.list.~list=a) and (b : B:: b.~list.list->includes(b))

Strategy
When one end of the link wishes to alter the list, it must first inform the other. In general,
the message must include self so that the recipient knows who it is being linked to. We
therefore have two messages:

void B::makeLink(a: A); // pre (~list=null)
void B::breakLink(a: A); // pre (~list = a)

The same thing applies in the other direction if it is required that B should be able to
initiate a change.

These messages should be used only between the participants in this link and should
not be the same as any other messages (for example, the messages from outside that ini-
tially prompt the objects to set up the link). This approach gives better flexibility.

makeLink is often invoked as part of a constructor initializing a newly created object.
Either the destructor of each object must send breakLink to all its list members, or it must
be demonstrated in the design documents that the object will never be destroyed when
there are list members.

A B

0,1 ~list

list *

Chapter 16 How to Implement a Component 671
Variants
The links may be one-to-one or many-many. If the cardinality is multiple at A’s end, then
B::breakLink(a) has a precondition (~list includes a).

One end may “own” the other—that is, making and breaking the link coincides with
creating and destroying the object. In that case, the job of makeLink is performed by each
of the constructor functions, and the job of breakLink is performed by the destructor. If
ownership can be transferred, a separate transfer function should be used.

The links are not necessarily pointers in memory: They can be database keys, names, or
any other kind of handle.

672 PART V HOW TO APPLY CATALYSIS
Pattern 16.15 Role Decoupling

Declare every variable and parameter with an abstract type written for that purpose.4

Intent
The intent is to decouple by minimizing the number of operations a client explicitly
requires.

Context
We have a draft of a basic design; we seek to improve and generalize it.

Considerations
Few of the objects you design need to use all the messages understood by those it collabo-
rates with. To put it another way, most objects provide a variety of messages that can be
divided into separate interfaces; each interface is used by a different class of client. This
situation enables substantial generalization.

Strategy
Declare every parameter and variable to be an abstract class or interface that specifies only
the operations used by that variable, and no more. (A less extreme version is to permit
some sharing of interfaces between variables.)

To show this technique pictorially, for every directed association between classes, draw
the link instead to a type specification (in C++, a pure abstract class; in Java, an interface).
The original target of the link is a subclass (Java: implementor) of this specification. In
Figure 16.9 we have decided that a Book is loaned not to a Member but to a BookHolder, of
which Member is only one possible implementation.

(Concrete classes are outlined in bold, abstract types with light rules.) Each type repre-
sents a role that the instances play in relation to the source of the link. Now it is easy to
imagine BookHolders other than Members and to imagine LibraryUsers other than Mem-
bers.

4. This principle is enforced in some programming languages, such as CLU.

Chapter 16 How to Implement a Component 673
Benefits
The design has been generalized.

The designers of the surrounding classes are less likely to spread into using messages
not intended for their use, so there is a tighter control on decoupling.

Variations
Fanatics may apply this pattern to every variable and parameter and hence every link on
the diagram—two, for two-way links. Each class is surrounded by a cloud of the interfaces
it requires and the interfaces it implements.

Notice that a collaboration framework (see Section 9.3, Collaboration Frameworks) is
a set of roles coupled by actions—a logical extension of this pattern.

Figure 16.9 Using types as roles to decouple.

Member

acceptLoan
endLoan

notifyHold

chargeFine
payFine
sendMail

«type»
LibraryUser

chargeFine
payFine
sendMail

Library Loan

*
1

*
1* *

Library

Member Display Shelf

Loan

«type»
BookHolder

acceptLoan
endLoan
notifyHold

674 PART V HOW TO APPLY CATALYSIS
Pattern 16.16 Factories

The idea here is to use classes and methods whose speciality is knowing what class to
instantiate.

Intent
The goal is to reduce coupling caused by explicit mentions of other classes in instance cre-
ation.

Context
After we have rid every declaration of any explicit mention of a class, we find that there
are still one or two class names lurking in the code.

Considerations
Role decoupling allows a Loan to work with any BookHolder and any LoanableItem so that
new variations could be invented every week; we could end up loaning geysers to Mar-
tians and never have to change a line of code outside those classes. But somewhere the
objects must be created, and at that point you must stipulate a particular class and not just
a type.

Strategy
Avoid distributing object creations all over the program. Instead, centralize the job of cre-
ating objects within factories [Gamma94]. The object-creation service provided by a fac-
tory has access to information with which it can decide which one to create. Call the
factory, providing relevant information, and it will return an appropriate new object.

Have one factory for every type that has different implementations. The factory is often
in a class of its own, and an instance of it is attached to something central.

Example
A new Loan must be created whenever a LoanableItem is handed over to a BookHolder.
But there may be different subclasses of Loan, depending on the details of the period, and
on different kinds of Items and Holders. Techniques, such as double-dispatching, can be
used to distribute the decision across all the classes on which it depends. Instead, a more
maintainable solution is to centralize the decision making and leave that item to make rel-
evant queries of the other classes:

class LoanFactory // there is one of these in every Library
{...

Loan makeLoan (LoanableItem item, BookHolder holder)
{ xxx= item.variousEnquiries(); yyy= holder.questions();

Chapter 16 How to Implement a Component 675
... decide depending on xxx and yyy ...
if (...) return new ShortLoan(item, holder);
else if (...) return new StandardLoan(item, holder);
else

Notice that the return type is declared as the supertype Loan, so the caller need not
know anything about the implementing classes. When a new class of Loan is invented, we
add it into the system and change the rules in the factory; but we need to change little else.

Benefit
The factory class acts as the central place in the design that knows about what implemen-
tations are available. This arrangement minimizes the number of places in the program
that must be modified to be reused or to take account of additional implementations.

Variants
The factory can also act as the central point for constructing user menus—for example, of
classes of Loan you can choose.

The LoanFactory may be a supertype, with different implementations providing differ-
ent policies in different Libraries. See Pattern 16.18, Plug-Points and Plug-Ins.

676 PART V HOW TO APPLY CATALYSIS
Pattern 16.17 Observer

Whenever a change in state occurs, broadcast a generalized notification message to all
those who have registered interest.

Intent
The goals are to keep one object up-to-date with the latest state of another and to allow
many classes of Observer to observe the same Subject.

Considerations
It is often desirable to have one object continually kept up-to-date as another’s state
changes. Examples include GUI and other façades, replicated database entries, and cells in
a spreadsheet.

A naïve scheme would invent purpose-designed messages for the subject to update the
Observer whenever it changes (as part of its response to other roles it plays). This
approach has the drawback that the two classes are coupled together, but we can apply role
decoupling.

Strategy
The two classes—Subject and Observer—are related by Pattern 16.14, Two-Way Link.
The association may be many-many. Once an Observer has registered with a Subject, any
state changes cause the Subject to broadcast a notification to all its Observers. The notifi-
cation must be appended to the code of any routine that might cause a change.

Pattern 16.15, Role Decoupling, is used to minimize the Subject’s dependence on the
Observer. All it knows about is a type that can receive the update messages (see Figure
16.10). Several Observers can watch one Subject at a time.

Figure 16.10 Using the Observer patterns.

Pattern-16.14,
Two-way link

Book Copy

Book Display Reservation

BookObserver

notify (details)*

Chapter 16 How to Implement a Component 677
Benefits
The Subjects can be designed without reference to how the Observers will work. In particu-
lar, the business core of a system can be designed independently of the user interface. New
classes of Observer can be added without disturbing the Subject.

Variants
The notify message can contain more information or less information about the nature of
the change and the new state. In some designs, it carries no further information at all, and
the Observer must come back and ask for whatever details it is most interested in.

678 PART V HOW TO APPLY CATALYSIS
Pattern 16.18 Plug-Points and Plug-Ins

Variability in an object’s behavior can be encapsulated in plug-ins.

Intent
The aim is to allow modular and extensible variety in an object’s behavior.

Considerations
To provide different versions of the behavior of a class of objects, it is possible to write
different subclasses. For example, a class of Report could have EmailReport and
WebPageReport. But this doesn’t work very well.

• You can’t change an object’s class during execution. This may be OK for some classes,
but others may need to change their state.

• If you have more than one dimension of variability, you would need a subclass for all
the combinations: LongEmailReport, ShortEmailReport, LongWebPageReport, and so

on.

To get an object’s behavior to change in different states, you could use a flag variable
and a switch statement. The drawbacks are as follows.

• You must change the object’s code to change the behavior.

• Many changes in behavior require a variation at many points in the code. It would be

possible to get them out of sync.

Strategy
Move variation points into separate objects and have only one basic class of principal
object (see Figure 16.11). Use Pattern 16.15, Role Decoupling, to keep the principal inde-
pendent of the various plug-ins.

Benefits
• New plug-ins can be written without altering the principal.

• The plug-ins can be changed on-the-fly, representing modes or states [Gamma95].

• The pattern can be applied over as many variabilities as there are.

Variants
You can also use small “policy” plug-ins or equal-sized component “plug-togethers” (see
Chapter 10, Components and Connectors).

Chapter 16 How to Implement a Component 679
Figure 16.11 Designing with plug-points.

Report Content
Generator

getTitle()
getNextPara()

writeOut()
{

Long
Reporter

Short
Reporter

header (title)
{

header (title)
{ print title;

print “=====\n”;
 }

Report

writeOut()

Report Formatter

header (title)
footer
paragraph (text)

Web Formatter

writer

1 formatter

1

Email Formatter

footer (title)
{ print “</HTM<L”>;}

footer (title)
{ }

print “<HTML><TITLE>”;
print title;
print “</TITLE><BODY>”;

}

formatter.header(writer.getTitle());
while (x= writer.getNextPara())

formatter.paragraph(x);
formatter.footer();

}

680 PART V HOW TO APPLY CATALYSIS
16.3 Video Case Study: Component-Based Design

In this study, we assume that there are several large components from which we wish to
build. They may be third-party components or may exist from a previous piece of design.

We make specifications of each component. Again, they may already exist, or we may
build them from our understanding of the components. In dire cases, this means experi-
menting with them in testbeds; the process of formalizing the spec exposes the questions
that need to be answered.

16.3.1 Rental Manager
Figure 16.12 shows the type model of the Rental Manager component. The Rental Man-
ager knows just enough about renting to tell you how much it costs to rent an item, when
it is due, and what payments have been made and which are outstanding.

action Rental Manager:: hireOut(_item, _hirer, _due) : RentalContract
pre: _item : catalog.stock & due>today
post: out += result & result = RentalContract.new &

Figure 16.12 Type model of the Rental Manager component.

Product

rateTo(Date): Money

name: String

Rental Manager

today:Date

hireOut (Item, Hirerld,due:Date) : RentalContract
return (RentalContract) : int
listOverDue() : Set(RentalContract)
listNonZeroBalances() : Set(RentalContract)
pay_charge (Money, RentalContract, String)
set_rate(Product, Money)
add_product(Product, rate)	 delete_product(Product)
add_item(Product, Item)	 delete_item(Product)
increment_date()	 purge()

* catalog

* stock

* account

product 1

* out

0,1 0,1

0,1 *

1 1 hirer

item

* returned

Item

code: ItemCode

Hirer

id: HirerId

RentalContract

charge: Money

due: Date

AccountItem

amount: Money

when: Date

for: String

Chapter 16 How to Implement a Component 681
result:: (due=_due & hirer.code=_hirer & _item=item.code &
charge=_item.product.rateTo(due) &
account.–>size=1 &
account:: (charge = –amount

when = today & for=”hireout”
))

Notice that there is no payment recorded by this operation.

The initial item on the account is the charge for the hire to the agreed due date. If pay-
ment is made on the spot, it should be recorded separately.

return (_contract) : int
pre: _contract::out
post:out–=_contract & returned+=_contract &

result =min(today – due, 0)

listOverDue() : Set(RentalContract)
post: result = out[due<today]

listNonZeroBalances() : Set(RentalContract)
post: result = returned[account.amount.–>sum <> 0] // only for returned items

pay_charge (amount, contract, why) // payments or charges, including fines
post: contract.account+= AccountItem.new [amount, today, why]

16.3.2 Reservation Manager
Figure 16.13 shows the type model for Reservation Manager. The Reservation Manager is
a database-based component set up to record the fact that a reservation is held for a partic-
ular title and that a particular copy is held for a reservation.

When a copy is returned, the wanted function should be used to find whether there is a
reservation for its title; if there is, use hold to allocate the copy to the reservation. Use
enquire(copy) to see whether a particular copy is being held.

Use delete(Reservation) when a reservation is canceled or out of date or to release a
held copy.

682 PART V HOW TO APPLY CATALYSIS
16.3.3 Membership Manager
Figure 16.14 shows the type model of Membership Manager. Our architecture will use the
Member::info field to store encoded historical statistics about the member: how many vid-
eos rented to date, how many returned overdue, and how many reservations not picked up.

External Reason is an identifier that we give to the Accounts Manager; when we
retrieve the information about an account item, we must look up the details of the item
elsewhere using the External Reason as a key.

The Membership Manager communicates with the outside world via an API over which
can be transmitted keys and suitably encoded forms of the modeled types. There is a set of
inquiry functions (not shown) for reading the database.

The designers will provide Java applets for displaying the following:

• List of Accounts or Members (with user facilities to select for further details)

• Member (with a pluggable routine for displaying the info field), with interactive facili-
ties to edit name, address, and phone fields

• Account (with a pluggable routine for displaying External Reason as a hypertext link

that can be queried further)

16.3.4 High-Level System Design
Here, the components are connected to form a design that meets the system spec. It’s
important to document some justification for believing that it does so properly. As a high-

Figure 16.13 Type model of Reservation Manager.

Reservation Manager

make_reservation (Member, Title)
enquire (Member) : Set (Reservation)
enquire (Title) : Set (Reservation // all reservations
enquire (Copy) : [Reservation] // whether held
wanted (Title) : Set (Reservation) // no current hold
old_holds (Date) : Set (Reservation)
hold (Copy, Reservation)
check_held_for (Title, Member) : {No_Reservation, Reserved} | Copy

delete (Reservation)

Member

id: Member Id *

who

what

1

which

1

*
Reservation

made : Date

Hold

from: Date

Copy

tag: CopyTag

Title

name: String

0,1 held

Chapter 16 How to Implement a Component 683
level design, only the overall scheme of interactions is decided; the detailed coding will be
left until coding.

Two major activities must be accomplished to bolt the given components together to
make the specified system.

• Decide how to represent the information—the state of the system.

• Decide how to implement each operation.

In terms of the general architecture, the system we have been specifying will be broken
into several systems: one for each Store plus a head office (HQ) system (see Figure 16.15).
In each store, there will be several Application (App) components: one for each Desk and
one for each of the Manager components specified earlier, which will be driven by the user
interfaces. We don’t yet know exactly how the HQ system will talk to the Store systems,
nor exactly what the communications between the Application and the Managers are.

We must relate the representation of state in the system specification to the representa-
tion in this architecture. We can do this in two steps. First, we split the system into stores
(see Figure 16.16). Then we map from the refined design to the spec. We are given the fol-
lowing:

• The spec of Video Business System (VBS)

Figure 16.14 Type model of Membership Manager.

Membership Manager

open_account (MemberInfo) : Member
close_account (Member)
add_item (Member, amount:Money, why: ExternalReason)
truncate_account (Member, from: Date)
purge_closed_accounts (before:Date)
displayAccountList (sql:String)

Member

name

address

phone

info: String

dob:Date

display

Account

opened: Date

/balance: Money

display

Account Item

when: Date

amount: Money

Opening

Balance

External
Reason

Reason

*

who

why

*

* accounts

* history

684 PART V HOW TO APPLY CATALYSIS
• The spec of a Video Store System (VSS)—like the VBS except that it deals only with a

single Store

• A model of the proposed implementation (VBS-DI)

Does the VBS-DI correctly implement the VBS? We split the question into two parts:

1. Can the state of the VBS-DI represent the state of the VBS?

– Yes. The set of stores for the business is represented as the set of stores in each

VSS; the set of titles for the business is represented in the set of titles in the HQ

system. Because we also keep a list in each store, we should provide a way of
keeping them equal. This will entail a new set of actions between HQ and the

Stores.

– Other objects are partitioned between the store’s systems accordingly.

2. Can each action specified for the VBS be performed by the VBS-DI? We don’t yet
have a set of opspecs for the VBS-DI, but if we duplicate each VBS spec by one for
the Store system, it should be easy to see that the functionality is the same. The main
difference is that we now acknowledge that the customer talks directly to the Shop as
opposed to the Business as a whole. (That is not entirely obvious. For example, tele-
phone reservations could be handled centrally.) So the store parameter of each action
is now self.

Figure 16.15 Distributed implementation.

Video Business System Distributed Implementation

Video HQ System

Video Store

Video Store System

Reservation Manager

Application Manager

Accounts Manager

Rental Manager

Desk

*

*

*

*

* * gui

*

resMgr

hireMgr

acMgr

Chapter 16 How to Implement a Component 685
We can show the relationships among the state components pictorially (see Figure
16.17). Because the VBS is a spec of its implementation, we should be able to replicate the
VBS model in the implementation and show how its links are all redundant. The invariants
that relate the implementation and specification models are called retrievals.

The next step is to partition the store system between the Manager components. Again,
it will help to put them all into one box and show the retrieval (see Figure 16.18). The
hope is that the VSS component implementation (VSS-CI) can be shown to be a satisfac-
tory implementation of the VSS. (We’re highlighting certain parts of it here.)

We can first document the retrievals, showing how everything hanging from store is
actually represented in the rest (details omitted here). Then we show how an interaction
between the components realizes the abstract action specs.

Figure 16.16 Separating store systems and business systems

in the architecture.

(Details
omitted)

Title

name:String

details:String

Video Business System

Person

name:String

address

phone

Membership

joined: Date

noShows: int

Store

*

*

*

*

Business
(Details
omitted)

Title

name:String

details:String

Video Store System

Video Business System Distributed Implementation

Video HQ System

Person

name:String

address

phone

Membership

joined: Date

noShows: int

Store

Video Store System

catalog

updates

Title

*

*

*

*

*

686 PART V HOW TO APPLY CATALYSIS
We must show how each operation breaks down into a sequence of operations on the
components. This can be illustrated using an interaction diagram (see Figure 16.19).

16.3.5 Detailed Design
Further work is required for those components that are used in the design but not yet
implemented—not purchased or adapted from previous projects. Just as we had a specifi-
cation of the whole system and broke it into successive pieces, so each component can be
broken into subcomponents, which in turn are specified and implemented, until we get
down to units that are directly implementable in program code.

Figure 16.17 Retrievals of distributed architecture to specification.

(Details
omitted)

Title

name:String
details:String

Video Business System – Distributed Implementation

 Person

name:String
address
phone

 Person

name:String
address
phone

Membership

joined: Date
noShows: int

Store

*

*

catalog *

b u s

* stores

* s t o r e S y s t e m s

Business

(Details
omitted)

Title

name:String
details:String

Video Store System

Membership

joined: Date
noShows: int

Store
s t o r e

*

*

*

Video HQ System

catalog
updates

Title
t i t l e s *

h q

Retrievals:
inv bus.stores = storeSystems.store
inv bus.catalog = hq.catalog
inv storeSystems.store.catalog = hq.titles

Chapter 16 How to Implement a Component 687
Figure 16.18 Retrieval of component architecture to store specification.

 Title

name:String
details:String

Video Store System – Component Implementation

Reservation Manager

 Hold

called:Date
callCount: int

 RentalItem

odRate:Money
returned: [Date]

Account Item

amount:Money
reason:String
when:Date

AccountItem

amount: Money
when: Date
for: String

 Rental

from: Date
due: Date
charge:Money

 Copy

identifier
sale:Bool
junk: [Date]
got: Date
hired: int

Person

name:String

Membership

joined: Date
noShows: int

Product

rateTo(Date): Money
name: String

Member

id: Member Id

Reservation

made: Date

Title

name: String

Hold

from: Date

Copy

tag: CopyTag

Item

code: ItemCode

Hirer

id: Hirerld

Store

Reservation

store

members *
member

hires

copy
 hires

*

* * *
0,1

stock

*

hold 0,1

 who *

titles *

what

resMgr

items *

Account

*
who

*

0,1 held

what

1

which

1

*

*

*

Rental Manager

Accounts
Manager

today:Date
* catalog

rentMgr RentalContract

charge: Money
due: Date

* returned

* account

* out

* stock

product 1

0,1

0,1 *

1 1 hirer

item

0,1

AppMgr
*

688 PART V HOW TO APPLY CATALYSIS
Figure 16.19 Interaction diagram of components.

contract := getContract(copy)

:App

o_due_daye := return(contract)

rate := get_od_rate(contract)

member := get_member(contract)

add_item(member, rate*o_due_days, contract)

title := get_product(copy)

res := wanted(title)

hold(copy, res)

resMgr rentMgr acMgr

	Chapter 16 How to Implement a Component
	16.1 Designing to Meet a Specification
	Pattern 16.1 Decoupling
	Intent
	Considerations
	Work of Generalization
	Importance of Interfaces

	Strategy

	Pattern 16.2 High-Level Component Design
	Intent
	Considerations
	Strategy

	Pattern 16.3 Reifying Major Concurrent Use Cases
	Intent
	Strategy

	Pattern 16.4 Separating Façades
	Intent
	Considerations
	Strategy
	Façades as Transparent Media
	Façades between Components in the Same Platform

	Pattern 16.5 Platform Independence
	Context
	Strategy
	Examples

	Pattern 16.6 Separate Middleware from Business Components
	Intent
	Considerations
	Strategy
	Benefits

	Pattern 16.7 Implement Technical Architecture
	Intent
	Considerations
	Strategy

	Pattern 16.8 Basic Design
	Intent
	Context
	Considerations
	Classes, Specification Types, and Design Types
	Encapsulation

	Strategy
	Review Responsibilities and Collaborations for Each Class
	Consider Ownership of Each Link
	Decide Distribution
	Decide How Objects, Links, and Actions Are Implemented.
	Collate Responsibilities of Each Class
	Generalize
	Reiterate for Each Design Type
	Coding

	Benefit

	Pattern 16.9 Generalize after Basic Design
	Intent
	Context
	Considerations
	Strategy

	Pattern 16.10 Collaborations and Responsibilities
	Intent
	Context
	Considerations
	Classes, Types, Design Types, Abstract Classes

	Strategy
	Document Responsibilities and Collaborators
	Localize Actions
	Minimize Coupling (Dependencies)

	Pattern 16.11 Link and Attribute Ownership
	Context
	Considerations
	Strategy

	Pattern 16.12 Object Locality and Link Implementation
	Intent
	Context
	Considerations
	Strategy

	Pattern 16.13 Optimization
	Intent
	Context
	Considerations
	Strategy
	Benefit

	16.2 Detailed Design Patterns
	Pattern 16.14 Two-Way Link
	Intent
	Objective
	Strategy
	Variants

	Pattern 16.15 Role Decoupling
	Intent
	Context
	Considerations
	Strategy
	Benefits
	Variations

	Pattern 16.16 Factories
	Intent
	Context
	Considerations
	Strategy
	Example
	Benefit
	Variants

	Pattern 16.17 Observer
	Intent
	Considerations
	Strategy
	Benefits
	Variants

	Pattern 16.18 Plug-Points and Plug-Ins
	Intent
	Considerations
	Strategy
	Benefits
	Variants

	16.3 Video Case Study: Component-Based Design
	16.3.1 � Rental Manager
	16.3.2 � Reservation Manager
	16.3.3 � Membership Manager
	16.3.4 � High-Level System Design
	16.3.5 � Detailed Design

