
© 2000 Desmond D’Souza www.kinetium.com www.catalysis.org 1

CATALYSIS

Systematic Components and Frameworks
with UML

Desmond D’Souza

dsouzad@acm.org

Kinetium

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 2

About the Speaker

Desmond D’Souza is founder of Kinetium. He is co-author and developer of
the CATALYSIS method (Addison Wesley 1998), and is a respected authority
and speaker at companies and conferences internationally. He was
previously senior vice president of component-based development at
Platinum Technology and at Computer Associates, working on methods,
tools, and architectures for component-based development. He founded
ICON Computing, an object and component technology methods and
services company that was acquired by Platinum in 1998. Mr. D’Souza has
worked with object and component technology since 1985.

Kinetium provides solutions for component-based development, modeling,
and architecture. To learn more about the strategies, methods, modeling,
architecture, and technology of component-based development and e-
Business, you can contact Desmond at dsouzad@acm.org

© 2000 Desmond D’Souza www.kinetium.com www.catalysis.org 3

Outline

Introduction
What problem are we setting out to address?

Components
What they are, how they interact, how to describe them

Architecture
What it is, why it is essential, how to describe it

Frameworks
The basic idea

Reuse
What it is (and is not), reuse at all levels

Systematic Reuse with Frameworks
Making models, designs, code reusable

Summary
Catalysis in Perspective

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 4

2. Traceability
bridge Business and IT
precise shared vocabulary
critical business questions early
refinement across levels

2. Traceability
bridge Business and IT
precise shared vocabulary
critical business questions early
refinement across levels

4. Architecture
infrastructure
interfaces, connectors
plug standards
… interoperability

4. Architecture
infrastructure
interfaces, connectors
plug standards
… interoperability

Talk Preview: Success With Components

5. Reuse Process
develop for reuse
develop with reuse
first reuse problem model
… then architectures
… then interface,code

5. Reuse Process
develop for reuse
develop with reuse
first reuse problem model
… then architectures
… then interface,code

3. Pluggable Components
precise interface-centric design
traceable business components

3. Pluggable Components
precise interface-centric design
traceable business components

= Integrated Business and
Systems Engineering
= Integrated Business and
Systems Engineering

1. Business Driven
understand business first
relate disparate views

1. Business Driven
understand business first
relate disparate views

© 2000 Desmond D’Souza www.kinetium.com www.catalysis.org 5

Outline

Introduction
What problem are we setting out to address?

Components
What they are, how they interact, how to describe them

Architecture
What it is, why it is essential, how to describe it

Frameworks
The basic idea

Reuse
What it is (and is not), reuse at all levels

Systematic Reuse with Frameworks
Making models, designs, code reusable

Summary
Catalysis in Perspective

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 6

What is a Component?

? A package of software that can be independently replaced. It both
provides and requires services based on specified interfaces. It
conforms to architectural standards to interoperate with others.

Individual component boundaries

Assembled component with external interfaces

? Totally separate interface from implementation
? Component package can include installable, interface, specs, models, tests, docs, …
? Granularity from 1-class JavaBean to multi-tiered business component with UI, DB

Architecture standards to support integration

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 7

How do Components Interact?

Components interact via clearly specified interfacesComponents interact via clearly specified interfaces

Focus on behavior; stored data, implemented procedures,
other interfaces remain completely hidden from clients

Focus on behavior; stored data, implemented procedures,
other interfaces remain completely hidden from clients

Warehouse

Supplier

IDelivery

How is data stored?
Is the data stored here?

…or actually stored here?
What other interfaces are

provided or used?

Interface
IMaintenance

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 8

Specifying a Component for its Client(s)

Warehouse

Supplier

IDelivery

Services Provided: Interface Spec
e.g. pickup(goods)

? inventory decreased by quantity of goods

Services Provided: Interface Spec
e.g. pickup(goods)

? inventory decreased by quantity of goods

Services Required: Interface SpecServices Required: Interface Spec

Events Raised: Notifications
of state changes

e.g. inventory below minimum
? restock event raised

Events Raised: Notifications
of state changes

e.g. inventory below minimum
? restock event raised

Logical model of component state: state attributes for each interface
The interface operations and events are specified based on this

e.g. inventory and minimum attributes used to specify restock event

Logical model of component state: state attributes for each interface
The interface operations and events are specified based on this

e.g. inventory and minimum attributes used to specify restock event

Result: Precise model of information exchanged, assumptions, guaranteesResult: Precise model of information exchanged, assumptions, guarantees

Not standard OO!!

IMaintenance

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 9

Client 1: Interface Client

A client only knows about the relevant interface specification
- operations, events, logical state through that interface
- each interface has its own ops, events, logical model of state

- warehouse inventory, staffing, storage maintenance: different views

A client only knows about the relevant interface specification
- operations, events, logical state through that interface
- each interface has its own ops, events, logical model of state

- warehouse inventory, staffing, storage maintenance: different views

Warehouse

IDelivery

What does the implementor of this component need to know ...What does the implementor of this component need to know ...

… about this component?… about this component?

Just this!Just this!

IMaintenance

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 10

Client 2: Component Assembler

Assembler needs to know full component specifications
- all interfaces provided and required
- how the logical state models (and events, operations) are related

e.g. storage out for maintenance ? less space available for delivery

Assembler needs to know full component specifications
- all interfaces provided and required
- how the logical state models (and events, operations) are related

e.g. storage out for maintenance ? less space available for delivery

Warehouse

IDelivery

What does the creator of this component assembly need to know ...What does the creator of this component assembly need to know ...

… about this component?… about this component?

IMaintenance

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 11

Client 3: Component Implementor

- implements all provided interfaces, assuming all required interfaces
- chooses physical state representation (or recursive assembly)

- has additional implementation component dependencies (controversial)
- exhibits specified behavior and logical state view for each interface
- conforms to specified architecture common for these components

- implements all provided interfaces, assuming all required interfaces
- chooses physical state representation (or recursive assembly)

- has additional implementation component dependencies (controversial)
- exhibits specified behavior and logical state view for each interface
- conforms to specified architecture common for these components

What does the implementor of this component need to know?What does the implementor of this component need to know?

Warehouse

IDelivery
IMaintenance

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 12

“Plug” together - Symmetry and Caution

? “Plugging-in” parts will only work if the two ends are compatible
? Client must specify required behavior
? Implementor must specify provided behavior

? Needs a symmetrical, precise, black-box view of every component
? We want to “plug” together even dynamically, in cyberspace !

? Need some shared standards for connecting plugs to sockets

120V@60Hz

220V@50Hz

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 13

Type = Precision in Interface Specs

Sales System <<type>>

startSale ()
addItem (Product, quantity)
closeSale ()
pay (bankCard, Pin)
<<output>> saleCompleted

Interface Operations
of System

A new sale is current

A new sale item has been
added to the current sale
with product, quantity;
product inventory updated

System of Interest

Terms used to specify
system operations
Not a stored data model
“What this system must
know about the domain”

Note: Behavior Specs can be made precise using UML/Object Constraint Language (OCL)

Sale

SaleItem
quantity

Payment

Authorization

*
prods

**

currSale
Cust

Product
inventory

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 14

Software Interface as Contract

? Type specification = Contract

? Type name = Contract name
? Type interface = Contract body
? Type model = Terms and Defs

? This is no coincidence!

Contract Name
The Development Agreement between

Joe Inc and Fred Ltd.

Terms and Definitions
tested = …
correct = …
product = …
extension = …
horrible thing = …

Body of Contract
…Joe Inc shall deliver a tested and
correctly functioning product to Fred
Ltd by the delivery date, subject to
extensions. If he should fail to do so,
then Fred Ltd can do many and
various horrible things to Joe...

Type

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 15

Different Aspects of a Component - I

? From Catalysis-based component standard with Microsoft / MDC
? www.mdcinfo.com

ToolUI
Core Database

Tool

TreeEditor

DiagramEditor

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 16

Different Aspects of a Component - II

Toolusers-view

Tool Database

Tool UI Tool Core

Specs (Tool or sub-component)

UI Source

Assemblies (Tool
or sub-component)

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 17

Different Aspects of a Component - III

ToolSpecification

ToolModule

ToolSource

ToolBinary

ToolAssembly

ToolDeployment

Component specified in
terms of its interface and
interfaces of components
it needs

Developer packages
binary into an
installable

After user
installs
a module

Produced by
compiler
and
developers

How components are
assembled in an
executing application

AssemblySource
and SpecSource
Refinement

Source
Binary
Refinement

Spec
Assembly
Refinement

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 18

Different Aspects of a Component - IV

? Component - full- lifecycle includes black-box spec, assembly of
sub-components, source, binary, installable module, deployment
? Component Specification - a component specified as a collection of ports. This style

of specification is suitable for assembling the component with other components to
produce a larger component

? Component Assembly - a static configuration of components, whose ports are wired
together with connectors

? Component Source - defines the lowest level manually created “source” code for a
component that will be related to its compiled form

? Component Binary - the installable, executable binary for a component (e.g., class
file bytecodes for a JavaBeans component). Binaries

? Component Module - packaged installable collection of binaries and other needed
parts

? Component Deployment - deployed, registered, and ready for discover and
instantiation

? Component Architecture - rules and constructs applicable at each of these levels

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 19

Summary - Components

? Interface centric, collaboration patterns

? Symmetrical, precise, black box views

? Refinement - separate interface from implementation

? Full-lifecycle component model - specification, design/assembly,
module, deployment

© 2000 Desmond D’Souza www.kinetium.com www.catalysis.org 20

Outline

Introduction
What problem are we setting out to address?

Components
What they are, how they interact, how to describe them

Architecture
What it is, why it is essential, how to describe it

Frameworks
The basic idea

Reuse
What it is (and is not), reuse at all levels

Systematic Reuse with Frameworks
Making models, designs, code reusable

Summary
Catalysis in Perspective

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 21

Modeling Business Components
? Assembling many configurations from kit of parts demands

? abstract parts, abstract connections, multiple views and “plug” precision

Receiver
Shipment*

Buyer
Order*

3. Separate views of customer for flexibility (can ship to any receiver)

Integrated business model
Customer

4. Precise interfaces
for 3rd party assembly

<<event>>

ship ordered

2. Higher-level late-bound connectors and properties
… abstract the protocol, defer binding

Shipper

ship (shipment, receiver)
shippingStatus (order)

Order Taker

takeOrder (info)
orderStatus (...)
cancel (...)
<<output>> ordered

1. Higher-level parts
… abstract the objects

- must integrate in conceptual models
- must integrate data in implementation

- shared objects with multiple interfaces
- federated data + cross-component links

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 22

- interface to
compose UI parts

Presentation

Task

Business Logic

Business Data

Business area

“local” connector

“distributed” connector

“distributed” connector

- interfaces to connect Business Logic
- vertical slice

Can package application components as:

Component packaging + reuse at all levels

Data Access

UI parts Domain Objects

Domain Objects + UI Panels

Logging, events,...

Zoom in to architectural tiers and
corresponding interfaces, or
zoom out to model abstract
business components and connectors

Shipper Order Taker

Shipper

O
rder T

aker

Business Components - Tiered Architecture

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 23

Component “Kits”

? Components are never stand-alone
? Only meaningful in collections that work well together

? A component “Kit”

? But the parts must work together in many assemblies
? Can only happen if they interoperate at the appropriate levels

? And each part must be itself flexibly and adaptable
? … often by configuring its smaller-grained “components”

? So, a component kit is a (potentially open-ended) set of parts built on
a coherent architecture

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 24

infrastructure services

Components without Architecture = Failure!
? For separately built components to work together they must share…

? Standard “horizontal” infrastructure services and interfaces
? transactions, security, directory, request broker, interface repository...
? OMG, Microsoft rapidly defining many global “standards”

? Standard “vertical” models of domain concepts
? What is a “Customer”, “Phone Call”, “Order”, etc.

? components must use same “domain language” at interfaces
? OMG defines “Vertical” architectures standards as well

? Standard “connector” mechanisms between components
? Synchronous / asynchronous message, event, workflow, mobile code
? Location transparency: CORBA, DCOM

? Other architecture standards
? Architectural tiers, implicit context passing, lock and connection release...

Order
TakerShipper

synchronous? event? work-flow?

What is customer,
phone call…?

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 25

What is Architecture?

The set of principles and decisions, rules, or patterns about any system
that keep its designers from exercising needless creativity

- Desmond D’Souza

• It is not about any specific size, scale, domain, or infrastructure

• Can range from “3-tier C/S” to “use Corba OTS” to “get/set method name rule”

• Includes business architectures: “all operations support are geographically
centralized” or “record client company information at first client inquiry”

• Based upon Frameworks

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 26

Is This an “Architecture”?

ButtonButton

SwitchSwitch reactor

ThermometerThermometer ThresholdThreshold

OROR

ThresholdThresholdDifferentiatorDifferentiator

slider

pressed

start

stop

toggled

<<physical>>

position

limit
value in

value

in
gradient

in

out

out
in1

in2

out
AlarmAlarm

in

<<event>>

<<event>>

<<prop>>

<<prop>>
<<prop>>

? This is an abstract view of the implementation
? It uses the language of properties, events, methods

? … and of connectors between these “connection points”
? It has a mapping to Java code patterns i.e. a refinement

? This design is an instance of the Java Beans style: design + code

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 27

Architecture as View based on Style

Full Implementation
Source Code, Database Definitions,
Modules, Hardware, Distribution, ...

Event / Property /
Method View

Functional
Requirements View

Object / Relational
Mapping View

Concurrency
View

Event / Property /
Method Style

ORM Style Concurrency Style

<<refine>>
mapping

<<refine>>
mapping <<refine>>

mapping

<<refine>>
mapping

Func-Req Style

Architecture = an Abstraction or View of the implementation

Architecture Style = Language + Rules (for some viewpoint)

<<instance>>

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 28

Varying Degree of Generative Style

? Architectural styles to keep 2 attributes in sync

? Style 0: “The Cowboy” - do it any way you want

? Style 1: “2 copies + update protocol” construct defined, use at will

? Style 2: “1 copy in shared memory” construct defined, use at will

? Style 3: both Style 1 and Style 2 available, choose at will

? Style 4: Whenever you have a requirement to keep 2 attributes in sync with each
other across a distribution boundary with infrequent updates, use the “2 copies +
update protocol” design

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 29

Catalysis - Architecture Style in UML

• Architecture style defined in separate package
• In general, realization refines specification in a

way that conforms to the architecture style
• Style constrains realization and/or refinement

realization

• Range of “generative” options
• Completely ad-hoc (or “creative”)
• Fully defined translation (compiler)
• Some defined rules and constraints

specification
s1, s2, s3, ...

<<refines>>

Architecture Style
(design elements, rules, constraints)

<<instance>>

Architecture Style
(design elements, rules, constraints)

s2

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 30

Summary - Architecture

? … it limits needless creativity

? Wide range:

0% (cowboy)………………….. 100% (compiler)

? Architecture defines / uses specific constructs, language, patterns, rules

? Architecture definition sharable across projects

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 31

Summary - Component Architecture

? Connectors couple Ports (connection points) of Components
? Connector abstracts interaction protocol and intermediaries
? Port abstracts internal structure as connection point
? Architecture style defines set of port / connector types

? Ports and connectors provide a thinking / design-time tool
? Implementation is considerably more complex

? Dynamic run-time assembly requires objectified port / connector
? Alternately, some form of reflective access to components

? Frameworks provide succinct application of all the above

© 2000 Desmond D’Souza www.kinetium.com www.catalysis.org 32

Outline

Introduction
What problem are we setting out to address?

Components
What they are, how they interact, how to describe them

Architecture
What it is, why it is essential, how to describe it

Frameworks
The basic idea

Reuse
What it is (and is not), reuse at all levels

Systematic Reuse with Frameworks
Making models, designs, code reusable

Summary
Catalysis in Perspective

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 33

A Framework is a Skeletal Solution

? Framework defines overall structure of parts and relationships
? trusses, beams, floor, how can they fit together, rules

? but some specifics are deferred
? number of floors, layout, wall placement, windows, doors

? You “plug-in” the specifics when “instantiating” the framework
? subject to constraints the framework imposes on the bits you plug in

? A framework helps define and enforce some aspect of architecture

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 34

Many Variants by Framework “Plug-In”s

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 35

Framework Concept at All Levels

room hotel

book library
returned notify member

checked out clean room

Business Framework

Reservations
resource owner

Technical Framework

Event Broadcast
event method

room reservations

UI Framework

Master-Detail
master detail

title abstract

Library System

Reservations

Event Broadcast

Master -Detail

Hotel System

Reservations

Event Broadcast

Master -Detail

Multiple frameworks used in any app

© 2000 Desmond D’Souza www.kinetium.com www.catalysis.org 36

Outline

Introduction
What problem are we setting out to address?

Components
What they are, how they interact, how to describe them

Architecture
What it is, why it is essential, how to describe it

Frameworks
The basic idea

Reuse
What it is (and is not), reuse at all levels

Systematic Reuse with Frameworks
Making models, designs, code reusable

Summary
Catalysis in Perspective

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 37

What is Reuse?

? What to reuse:
? Code
? Interfaces
? Designs
? Problem Domain Models

Reused V1

My Code

What to reuse?

Interface

? Don’t reuse code without spec
? Payback includes specs, architecture, … code

Code

How to reuse?

Problem

Reused V2

What happens when new code version released?

? How to reuse:
? Cut and paste
? White-box inheritance
? Black-box composition
? Code-generation

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 38

What can a Reusable Component include?

Abstract
problem(s)

Traceable linkage to…

(Refinement)

Model-driven approach
keeps these largely
technology independent

Good architecture keeps
this infrastructure
independent

Implementation
(executable,

design,
source,

template…)

Architectural assumptions

Tests, documentation,
example uses...

Interface
+

Specification

Name + description

© 2000 Desmond D’Souza www.kinetium.com www.catalysis.org 39

Outline

Introduction
What problem are we setting out to address?

Components
What they are, how they interact, how to describe them

Architecture
What it is, why it is essential, how to describe it

Frameworks
The basic idea

Reuse
What it is (and is not), reuse at all levels

Systematic Reuse with Frameworks
Making models, designs, code reusable

Summary
Catalysis in Perspective

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 40

Model Frameworks - Generic Models

? A generic model / design / implementation component whose
? Defines the broad generic structure and behavior
? Provides plug-points for adaptation

? Reuse starts with commonality in problems themselves!

allocate room to
seminar session if

room facility meets
session needs...

allocate machine time
to batch lot if

machine capability
meets lot processing ...

generalize

allocate resources
to jobs if resource

capability meets job req ...

plug in

room session time lot

Generic model, design, or code

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 41

Resource Allocation Framework

<Job>
when: DateRange

<Resource>

<Requirement>

*

** meets
<Capability>

*

capability

* 0,1

allocatedschedule

invariants

Job:: //only allocate resource whose capability matches requirements
allocated <> nil implies allocated.capability.meets ->includes (self.requirement)

Resource:: // resource not double-booked: its jobs dates do not overlap
schedule->forAll (j,k | j <> k implies not j.when.overlaps(k.when))

requirement

ResourceAllocation <<framework>>

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 42

“Applying” frameworks to build a Model

? Built by plugging into pre-existing framework (twice)

Seminar Scheduling

ResourceAlloc ResourceAlloc

job

resource

Topic

SeminarSession
when: DateRange

Room

RoomFacility

Instructor

InstructorSkill

inv capability == certs.skills

Certification

* skills

* certs
jobresource

capability
requirement requirement capability

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 43

The Full Model can be “Unfolded”

SeminarSession:: //only allocate suitable instructors and rooms
instructor <> nil implies instructor.capability.meets instr Rqmts ->includes (topic)
room <> nil implies room.facility.meets Room Rqmts ->includes (topic)

Room:: // room not double-booked: its session dates do not overlap
schedule->forAll (j,k | j <> k implies not j.when.overlaps(k.when))

Instructor:: // instructor not double-booked: its session dates do not overlap
schedule->forAll (j,k | j <> k implies not j.when.overlaps(k.when))

Topic

SeminarSession
when: DateRangeRoom

RoomFacility

Instructor

InstructorSkill

*

* meets Room Rqmts> *

facility

schedule> *

0,1 <room

*

*

inv capability == certs.skills

Certification

* skills

* certs

* meets instr Rqmts *

capability

* <schedule

instructor> 0,1

*

*

Seminar Scheduling

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 44

Some Business Model Frameworks

? Resource Allocation
? Assign a resource to a job if the resource capability meets the

job requirement, watching for overbooking

? Customer Trends
? Track a customer’s preferences for different products by monitoring how frequently

he/she has indicated an interest in that product (e.g. by purchasing, calling,
requesting samples, …)

? Production and Inventory
? Manage just-in-time inventory of some products by tracking the number of itemsof

that product in inventory, and placing an order for the production facility when
inventory drops below some threshold

? Note: these could be used in very different combinations

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 45

A Complete Seminar Business Model
? Built by specializing three different pre-existing model frameworks

Seminar Business

ResourceAlloc ResourceAlloc

CustomerTrends

Production

indication

customer

product

producer
product

item

job

resource

Topic

SeminarSession
when: DateRange

Room

RoomFacility

Instructor

InstructorSkill

inv capability == certs.skills

Certification

* skills

* certs

Copy CopyCenter

Customer

jobresource

capability
requirement requirement capability

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 46

Range of Frameworks

? Systematic Reuse with Frameworks
? Domain Models
? Design Patterns
? Abstract and Concrete frameworks via Refinement
? Architectural Connectors
? JavaBeans Frameworks
? Layered Frameworks - Fundamentals to Domains

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 47

Design Patterns as Frameworks

Subject-Observer

<Observer>
isProjection(Subject): boolean

update()
post: isProjection(sub)

<Subject>
s: State
inv changed(s)=>
obs->forAll (o |
obs.update(self))

register(Observer)
unregister(Observer)

obs

sub *

externally: subject and observers always appear to be in sync
inv Subject->forAll (s | s.obs->forAll (isProjection(s))

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 48

Applying Design Patterns

? Application defines mappings of types, attributes, actions

Power-Switch-Display

PowerSwitch
isOn: boolean

turnOn
turnOff

SwitchDisplay
isRed: boolean

updatesubject
[s = isOn]

observer
[isProjection(s) = s.isOn <=> isRed]

SubjectObserver

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 49

Factory Pattern : Generative Aspects

Factory

<Abstract>Factory

make<Abstract>(): <Abstract>
post
<Abstract>.new = Set { result }

generated factory class, make methods

<Concrete>Factory

make<Abstract>(): <Concrete >

<Abstract>

<Concrete>

placeholder

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 50

Applying Factory Framework

Thread Solaris ThreadNT Thread

Factory

Abstract Concrete

Thread Management
Factory

Factory

AbstractConcrete

Import with substitution

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 51

The Model is Automatically Generated

Thread Solaris ThreadNT Thread

<Thread>
Factory

<Solaris
Thread>
Factory

<NT Thread>
Factory

Thread Management

makeThread():
NT Thread

makeThread():
Solaris Thread

makeThread():
Thread
post
Thread.new
= Set { result }

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 52

Frameworks: Two More Dimensions

? Frameworks can be described at different levels of refinement

? Frameworks themselves are composed of smaller frameworks

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 53

Framework for Architectural Connector

connector

Workflow connector

<xxx> <yyy>

t emplate defines
protocol of actions
bet ween components that
use this connector type

«Workflow»

Placeholder types
map to existing façades within
connected components, or to
code generated “adapters”

Here is what I mean
by “Workflow” in any domain...

? A connector abstracts some interaction protocol

? Connector is used by “plugging” into that framework
? Different “connector” frameworks: workflow, events, properties

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 54

Summary - Generative Architecture

? Architectural style defines language and rules for valid realizations of
some specification
? Style = Set of <spec, realization, refinement>

? Style either defined as constraint or “generative”

? Generative style = construct + its realization pattern

? Frameworks capture any model pattern
? Framework is a package
? Pattern application is import + substitute

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 55

Framework for JavaBean <<property>>

? <<property>> stereotype means a read-write accessor
? Stereotype implies import with substitution

? import property [X \ EditorCore, property\selection, T\Element]

EditorCore

Element
selection 0,1

<<property>>

editor

property

get_<property> () : T
set_<property> (T)

property: T
X

get_selection () : Element
set_selection (Element)

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 56

Implementation Frameworks

? Frameworks can include both models and implementations

? An implementation framework configures a particular set of code
components to realize a particular model framework

? Like any framework, it leaves some code “plug-points” for customization
- via delegation, sub-classing, code-generation…

Framework
spec

Spec A Spec B

Framework
impl

Generalize
problem

Specialize

Generic impl

Impl A Impl B

Specialize

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 57

Component Framework: Seminar
System

? Partial implementation with specs of the missing pieces

Seminar System Implementation 2

Sales FE Qualifications DB
Calendar

Planner
Instructor FE

FancyPlanner

PlanTastic
Datime

Carl’s Cal
Our Q DB

framework
with specification
‘sockets’

implementations
‘plug into’
sockets

implements

light border =
specs only

dark border =
implementations

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 58

Framework for Architectures - All Levels

? Constructive approach to modeling and design with full traceability
? Libraries and commerce of frameworks of models, designs, and code

Business Models
Barter
Trader
Authorizer

Domain Models
Resource Allocation
Account Settlement
User-Interface Patterns

Design Patterns
Corba-CGI Gateway
Data Marshalling
Thread Pooling
Subject-Observer
2-Way Link
Moving Window

Fundamentals
Total Ordering
Groups
Range
Descriptors

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 59

The Vision of Layered Frameworks

? Layered frameworks - fundamentals to domain-specific
? Example of Catalysis frameworks in business

? CBOP (Consortium of Business Object Promotion), Japan
? Business Domains: Wholesale sales, Financial Accounting

Common Scalars

Time
Money

Sales Patterns

Inventory Product Catalog

Wholesale

Distribution

Generic Graph, DAG,
Tree, Bipartite Graph

Graphs

Ranges

Discrete Structures

Ordered

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 60

Problem Domain to Business Solution

Business Model

Customer ServiceDeployment Mng

SW
Distribution

Tool

Service
Request Tool

Problem domain models
+ process models

+ product models
= Business Solution Model

Problem Domain Models

Product / tool models
based on domain models

Business
Process
Model

Service
Request Tool

SW
Distribution

Tool

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 61

PM Tool

Equipment Statistics

Essential network expansion model

Network Expansion - Essential

Equipment Statistics

Expansion Processes before automation

Net Expansion Biz Process - As-Is

watch

panic

Spec of a PM tool

PM Tool Requirements Spec

Equipment Statistics

Net Expansion Processes with new tool

Net Expansion Biz Process - To-Be

PM Tool

alarm

simulate
monitor

Plans

upgrades
deployment

Design of a PM tool

PM Tool Design

Collection and processing of network statistics

Performance Monitoring - Essential

Billing customers for services

Customer Billing

Equipment Customer Bill
Horizontal

partition

Vertical partition

Import and
“say more”

about
Equipment

Enterprise Models - Package Partitions

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 62

Domain, Process, and Machine

Independent of variable
human/machine process

Domain Concepts
Essential Model

Includes minimal model of Environment

Machine Specification

Machine Design

Using specs of sub-components C1, C2Specific detailed process
including Machine

Process Model
Detailed (uses Machine)

C2 Spec
C1 Spec

Machine Architecture

Rules constraining design

? Uniform structure of specification, refinement, architecture

? Clear separation of specification, implementation, usage

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 63

Component and Enterprise Similarities

? Interface vs.
Implementation

? Shipper has different
view of Customer than
OrderTaker

? Security, Transactions,
naming

? Problem Domain vs.
Business Process vs.
Application Spec vs.
Application Impl

? Customer Care
department vs. Network
Expansion department

? Approval levels,
escalation and
notification, centralized
support operations,…

? Levels of
abstraction

? Multiple Views

? Architecture
standards

Components Enterprise

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 64

System Integration - Structure and Route

Implementation A Implementation B

System Spec
Spec(A) + Spec(B) + X

Business
Requirement

Spec (A)
Spec (B)

Architecture
Impls

? Fixed underlying structure, different route and techniques

Architecture
Specs

Integrated
Implementation

Spec(A) Spec(B)

Integrated Design

1. Business model, approximate spec

2. Reverse Engg.
Component specs

3. Design the Integration,
Based on Architecture. specs

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 65

Provision
Components

Architect
and

Develop
for

Reuse

Assemble
Solutions
Develop

with
Reuse

Solutions

Reuse - Two Distinct Processes

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 66

Potentially Reusable
Artifacts

Architecture

Generalization, refactoring,
homogenization, reverse engineering, ...

Quality

Catalog

Unit testing, integration testing,
certification, ...

Categorization, search attributes,
documentation, ...

R
eu

se
 P

ro
ce

ss

Composability

Trust

Organize

Reuse - Investment in Building Assets

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 67

SolutionBiz Problem

R
eq

ui
re

m
en

ts

A
na

ly
si

s

D
es

ig
n

Im
pl

em
en

ta
ti

on

N
ew

N
ew

N
ew

N
ew

A
ss

em
bl

e

A
ss

em
bl

e

A
ss

em
bl

e

A
ss

em
bl

e

Reuse Process

Reuse-Driven Development Architecture

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 68

Component-Based Development

Component-based Development: a development approach in which

… all artifacts — from executable code to interface specifications,
architectures, and business models …

… scaling from complete applications and systems down to
individual components …

… can be built by assembling, adapting, and “wiring” together
existing components into a variety of different configurations

© 2000 Desmond D’Souza www.kinetium.com www.catalysis.org 69

Outline

Introduction
What problem are we setting out to address?

Components
What they are, how they interact, how to describe them

Architecture
What it is, why it is essential, how to describe it

Frameworks
The basic idea

Reuse
What it is (and is not), reuse at all levels

Systematic Reuse with Frameworks
Making models, designs, code reusable

Summary
Catalysis in Perspective

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 70

What is Catalysis™?

A next-generation standards-aligned method
For open distributed component systems

from components and frameworks
that reflect and support an adaptive enterprise

Precise models and systematic process
UML partner, OMG standards, TI/MS standards

Dynamic non “stovepipe” systems

Compose pre-built interfaces,
models, specs, implementations...

…all built for extensibility

From business
to code

More info at www.catalysis.org and www.platinum.com
Catalysis has been in development and use since 1992
Supports components, OO, legacy, heterogenous systems
Addison Wesley, “Objects, Components, Frameworks…” 1998, D’Souza & Wills

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 71

Catalysis: Beyond UML
? UML + simple consistent approach, process, techniques

? Traceability from business models to code
? Business-driven, improved change management, quality assurance

? Precision , with clear unambiguous models and documents
? Uncover issues early, explicit shared vocabulary and understanding

? Component Based Development
? Interface-centric flexible assembly from parts based on common architecture

? Reuse of designs, specs, problem domain models, architectures, ...
? Consistent and rapid architecture via patterns and frameworks

? Scalability from small to large teams and projects
? Consistency, completeness, adoption spectrum, incremental development

? Process that is flexible yet repeatable, with multiple “routes”
? In terms of flexible process patterns with full process implementation

Next Generation Solutions including methods, tools, content

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 72

Refinement
(mapping)

Traceability from Business to Code
Zoom in/out of use-case (user task)
(abstract action or detailed dialog)

Zoom in/out of objects
(external or internal view, including software)

Client

Company
buy course

Client

Company

schedule

pay

deliver

pay
Client

Company

schedule

deliver

Client

Companyschedule

pay

deliver

SW System

Components

? Fractal zoom in/out with equal sharpness

Refinement
(mapping)

Traceability Precision Components Reuse Scalability Process

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 73

Precise Traceability via Refinement
Traceability Precision Components Reuse Scalability Process

Client

Company
buy course ($)

Refinement model
(mapping)

Admin

Company

schedule

pay

deliver

Instructor usage =
...instructor, qual, session…

Client know-how =
...students, skills

$ = …session, cost, ...
buy course =

<schedule + deliver + pay>

funds
instructor usage

funds
know-how on topic

Session
date, topic
cost

Instructor
qualified

Students
skills

fee-due
funds

? Sharp abstraction without
zooming into details

? Trace mapping defined in
“refinement model”

? Better tests, inspection,
traceability, design reviews

Attributes for detailed actions

Attributes for abstract action

Refinement model,
text or diagrams

Post: Funds transferred, know-how gained, instructor used

Post:Session of topic scheduled, qualified instructor assigned

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 74

How do Components Interact?

Components interact via clearly specified interfacesComponents interact via clearly specified interfaces

Warehouse

Supplier

IDelivery

Interface

IPickup

Use higher- level parts and connectors
Focus on individual interfaces

- precise external behavior (provided + required)
- all implementation aspects completely hidden

Use higher- level parts and connectors
Focus on individual interfaces

- precise external behavior (provided + required)
- all implementation aspects completely hidden

Traceability Precision Components Reuse Scalability Process

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 75

Systematic Framework-based Reuse

room hotel

book library
returned notify member

checked out clean room

Business Framework

Reservations
resource owner

Technical Framework

Event Broadcast
event method

room reservations

UI Framework

Master-Detail
master detail

title abstract

Library System
Reservations

Event Broadcast

Master -Detail

Hotel System
Reservations

Event Broadcast

Master -Detail

Multiple frameworks used in any app

Traceability Precision Components Reuse Scalability Process

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 76

Integration -
horizontal

Scalable to Enterprise Modeling

marketing
engineering

sales

IT

support

Separation - separate views with dependencies

Package

Package

Package

Package

Package

Sharing - frameworks for
shared models, repeating patterns

Object-Relational map
Seamless - from biz to code

Service-Level Agreement

Combined

Package Package

Combinedrefine

Synchronization - between
all models and “biz world”

& vertical

Traceability Precision Components Reuse Scalability Process

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 77

Typical Business System with Catalysis

RequirementsRequirements Domain ModelsDomain Models

System ContextSystem Context
Understand problem, system context,
arch and non-functional requirements.

System SpecificationSystem Specification ScenariosScenarios

Type Model and Op SpecsType Model and Op Specs
Describe external behavior of target
system using problem domain model

Architectural DesignArchitectural Design Platform, Physical ArchitecturePlatform, Physical Architecture

Logical Application ArchitectureLogical Application Architecture

Partition technical and application
architecture components and their
connectors to meet design goals

UI DesignUI Design

dialog flow,
prototype, usability

DB DesignDB Design

class mapping,
transactions, etc.

Component Internal DesignComponent Internal Design

Design interfaces and classes for
each component; build and test

Interface and Class SpecsInterface and Class Specs

Implementation and TestImplementation and Test

D
ictionary

D
ictionary

Outside
(+ project
constraints)

boundary

inside

Traceability Precision Components Reuse Scalability Process

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 78

CBD/Catalysis Process - Web Site version

Traceability Precision Components Reuse Scalability Process

Business context, problem definition, solution constraints

Analyze, design, build, test cycles

Deliver solutions

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 79

Process - High Level Package Structure
Traceability Precision Components Reuse Scalability Process

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 80

Three Modeling Scopes or Levels

Domain/BusinessDomain/Business

Component SpecComponent Spec

Internal DesignInternal Design

Goal

“Boundary”: Specify Component
scope and define component responsibilities
define component/system interface
specify desired component operations

“Outside”: Identify Problem, Solution
establish problem domain terminology
understand business process, roles, collaborations
build as-is and to-be models

“Inside”: Implement the Spec
define internal architecture
define internal components and collaborations
recursively design insides of each component

Level/Scope

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 81

Three Modeling Constructs

Model external behavior of an object

Model interactions of a group of objects

Map concrete to abstract model

Collaboration

Type

Refinement

Recurring patterns of collaborations, types, designs, etc.
define generically, “plug-in” to specialize

Fram
ew

ork
Buy(x)

Range(Y)

Buy BookBuy Service

Money RangeTime Range

Select book,
Buy Selection

Buy book

Select(Y)do(X)

Do(X)to(Y)

Select shape,
Delete Selection

Delete shape

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 82

Three Principles

Abstraction
- clear views
- technology insulation

Precision
- expose gaps early
- accurate shared

understanding

Pluggable Parts
- no duplicate work
- consistency by reuse
- quicker development

Abstract descriptions
(requirements, architecture,
specifications) become
robust, reliable, traceability

Reuse of parts includes
implementation, interfaces,
specifications, requirements,
architecture, patterns, ...

Reusable parts can be composed
reliably and predictably

Consistent
Core

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 83

Adoption Spectrum - Think Big, Start Small

Lite
type diagrams (or text glossary)
component models
implementation code

Sophisticated
standard frameworks
testable refinement
formal architecture
repeatable process
repeatable infrastructure impl
business-to-code

Enterprise
organization
roles
standards
reuse program
business-to-code

Project
team skills
mentoring

depth

breadth

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 84

Minimize the MagicMinimize the MagicMinimize the Magic

The Key to Catalysis

? Minimize the “magic” that happens in a development process
? Gaps between business process, software solutions, technical infrastructure
? Capture known designs, techniques, processes, architectures, …
? Common vocabulary across business, analyst, architect, programmer
? Common core techniques for requirements, non-functionals, design, specs...

? Full lifecycle coverage
? Business problem driven with traceability from requirements to code
? Rapid application development with reuse of all levels
? Combine IT Engineering and Business Engineering into one whole

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 85

Experiences with Catalysis
? EDS : Internet Multimedia division

? Adopted as a required part of development standards 1998
? Lockheed Martin: Defense projects

? Adopted as integral part of standard since 1997
? USAA: Insurance

? Successful application on risk -profiling project 1998
? Yellow Services: Travel and Transportation

? In current use in Enterprise Systems Management domain modeling and CBD
? Credit Suisse: Asset Management

? Adopted as integral part of standard 1998
? Texas Instruments WORKS: Factory Automation 1997-1998

? Successful and “deep” use on capacity planning and scheduling
? Successful “lite” use on overall project

? Daimler Benz
? Used since 1998 with good results
? “easy to understand core, very consistent and complete overall method”

? Visa / Chicago, BMW, Nortel, Olivetti, Siemens, Dutch Ministry of Taxes,
KPMG/Germany, LCM/Italy, and more …

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 86

Success With Components
2. Traceability
bridge Business and IT
precise shared vocabulary
critical business questions early
refinement across levels

2. Traceability
bridge Business and IT
precise shared vocabulary
critical business questions early
refinement across levels

4. Architecture
infrastructure
interfaces, connectors
plug standards
… interoperability

4. Architecture
infrastructure
interfaces, connectors
plug standards
… interoperability

5. Reuse Process
develop for reuse
develop with reuse
first reuse problem model
… then architectures
… then interface,code

5. Reuse Process
develop for reuse
develop with reuse
first reuse problem model
… then architectures
… then interface,code

3. Pluggable Components
precise interface-centric design
traceable business components

3. Pluggable Components
precise interface-centric design
traceable business components

= Integrated Business and
Systems Engineering
= Integrated Business and
Systems Engineering

1. Business Driven
understand business first
relate disparate views

1. Business Driven
understand business first
relate disparate views

Catalysis Component-Based Development for E-Business www.kinetium.com www.catalysis.org 87

References

? [OCF] Objects, Components, and Frameworks with UML: the Catalysis
approach, D. D’Souza and A. Wills, Addison Wesley, 1998

? UML 1.3 Specification: uml.shl.com

? UML 2.0 Working Group documents: uml.shl.com

? C. Szyperski, “Component Software: Beyond OO Programming”,
Addison Wesley, 1998

? Catalysis overviews and discussions: www.catalysis.org

