
Desmond D’Souza and Ian Maung

Presented at OOPSLA 1999

Precise Component
Architectures

with UML and CATALYSIS

Precise Component
Architectures

with UML and CATALYSIS

www.catalysis.org 2

About the SpeakersAbout the Speakers

Desmond D’Souza is senior vice president of component-based development at
Computer Associates, and leads its Catalysis/CBD Technology Center where
he works on methods, tools, and architectures for effective component-based
software engineering. He is co-author and developer of the CATALYSIS method,
published by Addison Wesley in 1998. Mr. D’Souza is a sought after authority
and speaker at companies and conferences internationally and may be
contacted at dsouzad@acm.org

Ian Maung is a Senior Architect at Computer Associates and a member of its
Catalysis/CBD Technology Center, working on methods, architectures, and
tools for effective component-based software engineering. He was the co-
developer of the CBD/Catalysis process guide available from CA, and has
extensive background in object modeling, semantics, and formal methods. Dr.
Maung may be contacted at ian.maung@platinum.com

www.catalysis.org 3

2. Traceability
bridge Business and IT
precise shared vocabulary
critical business questions early

2. Traceability
bridge Business and IT
precise shared vocabulary
critical business questions early

4. Architecture
infrastructure
interfaces, connectors
plug standards
… interoperability

4. Architecture
infrastructure
interfaces, connectors
plug standards
… interoperability

Success with ComponentsSuccess with Components

5. Reuse Process
develop for reuse
develop with reuse
first reuse problem mod
… then architectures

… then interface,code

5. Reuse Process
develop for reuse
develop with reuse
first reuse problem mode
… then architectures

… then interface,code

3. Pluggable Components
precise interface-centric design
traceable business components
assemble from coherent component kit

3. Pluggable Components
precise interface-centric design
traceable business components
assemble from coherent component kit

= Integrated Business and
Systems Engineering

= Integrated Business and
Systems Engineering

1. Business Driven
understand business first
relate disparate views

1. Business Driven
understand business first
relate disparate views

www.catalysis.org 4

What is Catalysis™?What is Catalysis™?

■ A next-generation standards-aligned method
� For open distributed component systems

� from components and frameworks
� that reflect and support an adaptive enterprise

Precise models and systematic process
UML partner, OMG standards, TI/MS standards

Dynamic non “stovepipe” systems

Compose pre-built interfaces,
models, specs, implementations...

…all built for extensibility

From business
to code

Catalysis has been in development and use since 1992
Supports components, OO, legacy, heterogenous systems
Addison Wesley, “Objects, Components, Frameworks…” 1998, D’Souza & Wills

The foundation of CA’s CBD and methods offering

www.catalysis.org 5

OutlineOutline
■ Precise component specifications in UML

� Interfaces
■ Refinement

� Component implementation refines spec
■ What is Software Architecture?

� Common definitions and examples
� Catalysis definition of architecture
� Specifying architectural styles using OCL
� Generating architectural styles using Frameworks
� Specifying architectural styles with Stereotypes

■ Specifying component architectural styles
� Components, ports, connectors and assemblies
� Static assemblies
� Dynamic assemblies

■ Realizing component architectural styles
� The CORBA component model

■ Conclusion

New

Note: some new slides today;
Latest version at catalysis.org

www.catalysis.org 6

Type of an Object: Multiple (Inter)Faces

� Object or component plays different roles
� It offers multiple interfaces, and is seen as different types
� Benefits to the airline, hotel: less coupling, more “pluggability”
� Benefits to person: easier to adapt to “plug” into a bigger system

Passenger
check baggage
board
deplane

Guest
do check in
order room service
do check out

What Type? What Type?

“Plug” into new service

Airline
Hotel

www.catalysis.org 7

Types: JavaBeans, COM+, Corba, ...

object:
Both

Guest

Passenger

interface Guest {
doCheckIn ();
orderRoomService();
doCheckOut ();

}

interface Passenger {
checkBaggage ();
board ();
deplane ();

}

interface Guest {
doCheckIn ();
orderRoomService();
doCheckOut ();

}

interface Passenger {
checkBaggage ();
board ();
deplane ();

}

class Both
implements Guest, Passenger {

// implementation ….
}

class Both
implements Guest, Passenger {

// implementation ….
}

HotelAirline

www.catalysis.org 8

What is a Component?What is a Component?
A package of software that is independently developed, and that
defines interfaces for services it provides and for services it requires.

Individual component boundaries

Assembled component with external interfaces

�External interface totally separated from internal design and implementation
� Implementation written in terms of interfaces of other components
�Package can include executable, interface, specs, models, tests, docs, ...

www.catalysis.org 9

The “Black-Box” Component

■ Signatures are not enough to define widely-used components
■ Two choices: either “plug-n-pray”, or …
■ Use better specifications that are both:

� abstract: apply to any implementation
� precise: accurately cover all necessary expectations

Thingami

frob (Thing, int)
Thing fritz(int)

NuclearReactorCore

add (ControlRod, int)
ControlRod remove(int)

Editor

spellCheck()
layout()
addElement(…)
delElement(…)

www.catalysis.org 10

Model-Based Type SpecificationModel-Based Type Specification

� Type described by list of
operations

� All operations specified in
terms of a type model

� The Type Model defines
specification terms
(vocabulary) that must
somehow be known to any
implementation

spellCheck()
layout()
addElement(…)
delELement(…)

Editor <<type>>

*

Element
preferredSize
position

Word Composite

*

*

dictionary

contents

every element has been positioned so that
its preferred size can be accommodated

every word in contents is correct
by the dictionary

www.catalysis.org 11

But, What about Encapsulation?But, What about Encapsulation?

■ Encapsulation is about hiding implementation decisions

■ It does not make sense to hide interfaces

■ And interfaces always imply expected behavior as well

� This is what polymorphism is all about

■ Hence, specify a minimal model of any implementation

www.catalysis.org 12

Formalizing Operation SpecsFormalizing Operation Specs

■ Operation specification can be formalized
� OCL (Object Constraint Language)
� Checked, used for refinements, testing, change propagation, …

Editor:: spellCheck ()
post // every word in contents

contents->forAll (w: Word |
// has a matching entry in the dictionary
dictionary->exists (dw: Word | dw.matches(w)))

www.catalysis.org 13

OutlineOutline
■ Precise component specifications in UML

� Interfaces
■ Refinement

� Component implementation refines spec
■ What is Software Architecture?

� Common definitions and examples
� Catalysis definition of architecture
� Specifying architectural styles using OCL
� Generating architectural styles using Frameworks
� Specifying architectural styles with Stereotypes

■ Specifying component architectural styles
� Components, ports, connectors and assemblies
� Static assemblies
� Dynamic assemblies

■ Realizing component architectural styles
� The CORBA component model

■ Conclusion

www.catalysis.org 14

Component-Based DesignComponent-Based Design

� Large component is a type for its external clients
� Implement it as collaboration of other components
� Specify these other components as types
� The child component models must map to the original model

E-Core
next word

replace word

maximum size
resize

children

Spell Checker

spellCheck()

Layout Manager

layout()
dictionary

words

Editor

spellCheck()
layout()
addElement(…)
delELement(…)

Editor Internal Designinternal design in a separate
package from the specification

www.catalysis.org 15

Each Component implements many Types

�Components offer different interfaces to each other
�Each interface has a different supporting model
�The implementation refines each interface spec

SC LM

next word
replace word

SpellCheckable

Word
seq *

curr

maximum Size
resize
children

Layoutable

Elem
size

descendants *

Spell-Checker Layout Manager

EditorCore

www.catalysis.org 16

Component ImplementationComponent Implementation
class EditorCoreClassEditorCoreClassEditorCoreClassEditorCoreClass implements SpellCheckableSpellCheckableSpellCheckableSpellCheckable, LayoutableLayoutableLayoutableLayoutable {

// store a tree of all elements — graphics, words, characters, tables, etc.
private ElementTree contents;

// this iterator traverses all elements in the contents tree in depth-first order
private DepthFirstIterator elementIterator = contents.root();

// this iterator only visits Word elements, ignoring others
private WordIterator spellPosition = new WordFilter (elementIterator);

// return the “next” word in the tree
public Word nextWordnextWordnextWordnextWord () {

Word w = spellPosition.word();
spellPosition.next();
return w;

}

// replace the last visited word with the replacement
public void replaceWordreplaceWordreplaceWordreplaceWord (Word replacement) {

spellPostion.replaceBefore (replacement);
}

}

www.catalysis.org 17

Class refines InterfaceClass refines Interface

contents

para-1 table

word1

word2
fig1

row1 row2

word3
fig2

Wordwords seq *

EditorCore <<class>>

Spell Checkable

next Word
replace Word

refinement
words =

contents.asDepthFirstSequence -> select (e | e.isKindOf (Word))

“abstraction function” or “retrieval”

■ Abstraction function “retrieves” abstract model attributes

www.catalysis.org 18

Implementation: Refinement + Retrieval

■ A class implements an interface
� The interface defines its own model and behavior spec
� The class selects its own data and code implementation

■ The class is a refinement of the type
� It claims to meet the behavior guarantees of the type for any client
� A retrieval (informal or formal) can support the claim
� Implemented abstract queries (formal) can be used for testing

■ One abstraction function for each specification attribute
� Specification types must be implemented as adapter for this test harness
� The pre/post conditions can then be executed as part of the code

Interface

Implementation

retrieval

maps from implementation
to interface

www.catalysis.org 19

The Power of Refinement

■ The notion of refinement and retrieval is very useful
� It permits flexible mapping between from realization to specification
� It solves a very real problem:

� “I have just made some change to my code. Do I have to update my
design models? Do I have to update my analysis models?”

■ Pick abstract model to conveniently express client spec
� Implementation model must have correct mapping to the abstract
� Encapsulates implementation without hiding specified behavior

■ Even more powerful with temporal (action) refinement
� The abstract level describes an abstract action
� The concrete level details an interaction sequence
� The retrieval establishes the mapping between the two

www.catalysis.org 20

Subtypes and Refinements
■ Sub-types refine (and retain) guarantees made by super-types

� The concrete implements, and can retrieve to, the abstract
� Any sub-type implementation meets all super-type guarantees
� Clients remain blissfully unaware of any change

■ Here is a common refinement: is it a sub-type?

Editor-1-Step

delete (Shape)

Editor-2-Step

select (Shape)
deleteSelection()

refine the protocol

www.catalysis.org 21

Refined Models and “Retrieval”

■ Finer grained interactions induce a finer grained model
■ Retrieve: Define abstract query in terms of refined model

� Define refined sequences that achieve each abstract action
■ Still, this is not a sub-type

contents1-step= unselected2-step + selected2-step

select2-step (s) + deleteSelection2-step () => delete1-step(s)

Editor-1-Step

delete (Shape)

Editor-2-Step

select (Shape)
deleteSelection()

Shape

Shape

notSelected

selected

*

*0,1

0,1 0,1

contents

www.catalysis.org 22

Validity RulesValidity Rules

■ The existence of a retrieval function or a state model does not
guarantee a valid refinement (although it is a great start).The following
conditions must also be checked:

■ Subtype
� whenever an abstract operation is applicable, so is its realization
� for any initial state, the retrieval of the final realization state after the

realization operation occurs satisfies the postcondition of the
specification

■ Collaboration Refinement
� whenever the abstract action is applicable, there is a path through

the state model (sequence of realization actions) from the initial
state to the final state such that the effect of the realization action
sequence satisfies the specification action postcondition

www.catalysis.org 23

Refinement kind determines Test harnessRefinement kind determines Test harness

■ Different test strategies for different refinement kinds
� pre/post instrumentation
� sequence of actions, covering success and exceptions paths
� hardware test structures with mapping to deployment hardware

■ Link to systematic test generation

message1
Black Box

message2

pre ...
post ...

(debug phase)
t est harnesspre ...

post ...
Component

st raight -t hrough
(inst alled mode)

www.catalysis.org 24

Section Summary - ComponentsSection Summary - Components

■ Interface centric, collaboration patterns

■ Symmetrical, precise, black box views

■ Refinement - separate interface from
implementation

www.catalysis.org 25

OutlineOutline
■ Precise component specifications in UML

� Interfaces
■ Refinement

� Component implementation refines spec
■ What is Software Architecture?

� Common definitions and examples
� Catalysis definition of architecture
� Specifying architectural styles using OCL
� Generating architectural styles using Frameworks
� Specifying architectural styles with Stereotypes

■ Specifying component architectural styles
� Components, ports, connectors and assemblies
� Static assemblies
� Dynamic assemblies

■ Realizing component architectural styles
� The CORBA component model

■ Conclusion

www.catalysis.org 26

Business Components: Modeling IssuesBusiness Components: Modeling Issues

Receiver
Shipment*

Buyer
Order*

3. Separate views for flexible use (can ship to any receiver)

Integrated business model
Customer

4. Precise interfaces
for 3rd assembly

<<event>>

ship ordered

2. Higher-level late-bound connectors and properties
… abstract the protocol, defer binding

Shipper

ship (shipment, receiver)
shippingStatus (order)

Order Taker

takeOrder (info)
orderStatus (...)
cancel (...)
<<output>> ordered

1. Higher-level parts
… abstract the objects

- must integrate in conceptual models
- must integrate data in implementation

- shared objects with multiple interfaces
- federated data + cross-component links

www.catalysis.org 27

infrastructure services

Components demand Architecture
Standards

Components demand Architecture
Standards

■ For separately built components to work together they must share…

■ Standard “horizontal” infrastructure services and interfaces
� transactions, security, errors, directory, interface repository...
� OMG, Microsoft rapidly defining many global “standards”

■ Standard “vertical” models of domain concepts
� What is a “Customer”, “Phone Call”, “Order”, etc.

� components must talk the same “domain language”
� OMG defines “Vertical” architectures standards as well

■ Standard “connector” mechanisms between components
� Synchronous / asynchronous message, event, workflow, mobile code
� Location transparency: CORBA, DCOM

OrderShip

synchronous? event? work-flow?

What is customer,
phone call…?

www.catalysis.org 28

What Architecture Isn’tWhat Architecture Isn’t

A

B

C

D

E

A neat drawing of boxes, circles,
lines etc. laid out nicely in PowerPoint
is NOT an architecture

Are A-E objects, modules, libraries or processes?
Are A-D similar, E different?
What do lines between blocks mean: interprocess communication, data flow?

How would you determine if an implemented system conformed to this architecture?

www.catalysis.org 29

A Conventional Definition of ArchitectureA Conventional Definition of Architecture

■ The architecture of a system consists of
� the structure of its parts

� (includes design-time and run-time, hardware and software)
� the nature and relevant externally visible properties of those parts

� (modules with interfaces, hardware units, objects)
� the relationships and constraints between them

Ivar Jacobsen (Component Strategies 1999)
“Architecture is about everything, but it isn’t everything.”

www.catalysis.org 30

4+1 Views of Architecture
(Kruchten 1996)

4+1 Views of Architecture
(Kruchten 1996)

Logical view
decomposition of domain functionality

Process view
processes and interactions

Implementation view
organization of development-time elements

Deployment view
organization of run-time elements

Use case view (+1)
Key use cases and scenarios

IEEE Architecture Definition (1999) is a generalization
above views can be further subdivided e.g. calls, uses, physical etc.

www.catalysis.org 31

Examples of “Architecture”Examples of “Architecture”

■ Coding rules
■ Hardware (physical) architecture
■ UI style

� e.g. navigate a 1-* association as a master-slave list box
■ Java Beans
■ Design patterns

� e.g. all object creation via factories
■ Persistence approach

www.catalysis.org 32

Coding rules Coding rules

■ e.g. canonical form in C++
�every class must define

�a parameter-less constructor
�a copy constructor
�an assignment operator
�a (virtual) destructor

■ ban gotos

www.catalysis.org 33

Hardware architecture Hardware architecture

AS/400

Web client

Web client

Web server
+ firewall

10/100 Hub

NT Server

NT Server

10

10

100

www.catalysis.org 34

Java Beans exampleJava Beans example

A static assembly of beans

property

output event

input method

ButtonButton

ButtonButton reactor

ThermometerThermometer ThresholdThreshold

OROR

ThresholdThresholdDifferentiatorDifferentiator

slider

pressed

start

stop

pressed

<<physical>>

position

limit
value in

value

in
gradient

in

out

out
in1

in2

out
AlarmAlarm

in

www.catalysis.org 35

RDBMS Mapping OutlineRDBMS Mapping Outline

■OOD class
■Object
■Object-ID
■Primitive attribute
■Object attribute (single-valued)
■Set-valued attribute
■Many-to-many association
■Polymorphism
■Subtype

■Table
■Row in table
■Primary key
■Column in row
■Foreign key
■Reverse foreign key + join
■Associative table (normalize)
■No counterpart
■Many options

� Collapse to 1 table
� Multiple tables + joins

Application
Objects

Relational
Database

Chasm
Crossing

www.catalysis.org 36

Section Summary - ArchitectureSection Summary - Architecture

■ … limiting needless creativity

■ Wide range:

0% (cowboy)………………….. 100% (compiler)

■ Architecture defines / uses specific constructs,
language, patterns, rules

■ Architecture definition shared across projects

www.catalysis.org 37

OutlineOutline
■ Precise component specifications in UML

� Interfaces
■ Refinement

� Component implementation refines spec
■ What is Software Architecture?

� Common definitions and examples
� Catalysis definition of architecture
� Specifying architectural styles using OCL
� Generating architectural styles using Frameworks
� Specifying architectural styles with Stereotypes

■ Specifying component architectural styles
� Components, ports, connectors and assemblies
� Static assemblies
� Dynamic assemblies

■ Realizing component architectural styles
� The CORBA component model

■ Conclusion

www.catalysis.org 38

What is the intent of “Architecture”What is the intent of “Architecture”

The set of design decisions, rules, or patterns about
any system that keep its designers from exercising
needless creativity

- Desmond D’Souza

• It is not just about any specific size, scale, domain, or infrastructure
• Can range from “3-tier C/S” to “use Corba OTS” to “get/set method names”
• Includes ways of defining, structuring, packaging, and sharing services
• Should often be made precise using an appropriate formalism

www.catalysis.org 39

Is This an “Architecture”?Is This an “Architecture”?

ButtonButton

SwitchSwitch reactor

ThermometerThermometer ThresholdThreshold

OROR

ThresholdThresholdDifferentiatorDifferentiator

slider

pressed

start

stop

toggled

<<physical>>

position

limit
value in

value

in
gradient

in

out

out
in1

in2

out
AlarmAlarm

in

<<event>>

<<event>>

<<prop>>

<<prop>>
<<prop>>

■ This is an abstract view of the implementation
� it uses the language of properties, events, methods

�… and of connectors between these “connection points”
� it maps to corresponding patterns in the Java code

■ This is an instance of the Java Beans style: design + code
■ This cannot be done (effectively, cleanly, precisely, …) in UML

www.catalysis.org 40

Architecture as View based on StyleArchitecture as View based on Style

Full Implementation
Source Code, Database Definitions,
Modules, Hardware, Distribution, ...

Event / Property /
Method View

Functional
Requirements View

Object / Relational
Mapping View

Concurrency
View

Event / Property /
Method Style ORM Style Concurrency Style

<<refine>>
mapping

<<refine>>
mapping <<refine>>

mapping

<<refine>>
mapping

Func-Req Style

Architecture = Abstraction or View covering some concerns

Architecture Style = Language Constructs + Rules

<<instance>

www.catalysis.org 41

Architecture and “Style” in CatalysisArchitecture and “Style” in Catalysis

• Architecture style defined in separate package
• In general, realization refines specification in a

way that conforms to the architecture style
• Style constrains realization and/or refinement

realization

Architecture Style
(design elements, rules, constraints)

• Range of options for “conformance”
• Fully defined translation (compiler)
• Completely ad-hoc (or “creative”)
• Some defined rules and constraints

specification

<<conforms>>

<<refines>>

www.catalysis.org 42

“Realization” Architectural Style “Realization” Architectural Style
■ A realization architectural style defines a set of realizations

� Just as an object type defines a set of objects
� Think of it as architectural type, similar to an object type

■ The aspects of a realization that are relevant to deciding whether or not
it conforms to a style is called its architecture

� e.g. style constraint = upper bound on McCabe complexity implies
architecture = flowgraph

� style constraint = Law of Demeter implies
architecture = callgraph

■ An architecture conforms to a style if it is a valid “instance of” that style

■ A style is documented as a collection of (possibly formal) constraints.

www.catalysis.org 43

Conform vs. Refine : Form vs. MeaningConform vs. Refine : Form vs. Meaning

Design

Specification

<<refine>>

Physical
Architecture

<<refine>>

Physical
Architecture

Style

<<conforms>>

Specification and architecture models
constrain the meaning of a design

Process
Architecture

<<refine>>

Process
Architecture

Style

<<conforms>>

Architecture styles constrain the form
of the architecture models and designs

www.catalysis.org 44

Checking refinement vs. conformanceChecking refinement vs. conformance

Client

Company
buy course ($)

Refinement model
(mapping)

Admin

Company

schedule

pay

deliver

Time of topic expert =
...instructor, qual, session…

Client know-how =
...students, skills

$ = …session, cost, ...
buy course =

<schedule + deliver + pay>

funds
time of topic expert

funds
know-how on topic

Session
date, topic
cost

Instructor
qualified

Students
skills

fee-due
funds

attributes

Attributes used by action

Refinement model,
text or diagrams

Post: Funds transferred, skills transferred, resource used

Checking refinement is
independent of checking
conformance to a
“realization” style

e.g. “all actions have at
most 3 participants and
are specified in OCL
consistent with the
attribute model”

www.catalysis.org 45

Conformance JustificationConformance Justification
■ Validity of design to architecture

� design refines architecture
■ Validity of architecture to architecture style

� check that description (model snapshot) is “instance of” style
� much easier than checking refinement (automatable?)

buy course
:Action

Accounts
: Type

Instructor
: Type

Scheduler
: Type

Client
: Type

participant

Model as a meta-level snapshot

Constraint: “No action may have more than three participant types”

Client

Accounts

Scheduler

Instructor

Model

buy
course

www.catalysis.org 46

ExamplesExamples
■ Coding rules

� realization is code
� rules are defined in a package that imports the language definition

package, can be formalized as OCL “meta” constraints

■ Physical architecture
� realization is deployed system
� rules are constraints on nodes and their properties

■ GOF design patterns and UI architecture can both be formalized using
frameworks

■ Java Beans style (ports and connectors) is an example of a component
architecture style and is again defined using frameworks

www.catalysis.org 47

Tiered ArchitecturesTiered Architectures

■ 3-tier, 4-tier are similar

Business model

UI specification Server specification

<<refines>>

Client - Server
system specification

all business
logic is handled
by the server

The UI spec doesn’t
import business model.
So the GUI is domain-
independent.

www.catalysis.org 48

“Refinement” Architectural Style“Refinement” Architectural Style
“Realization”

Architectural Style

“Plain” architectural style
constrains the form of
description of the realization

<<conforms>>

Specification
s1, s2, ...

realization

<<refine>>

“Refinement”
Architectural

Style

“Refinement” architectural style
constrains the form of the
refinement, covering realization
as well as refinement mapping
e.g. it dictates realization of s2

s2
<<conforms>>

www.catalysis.org 49

Refinement Vs. Realization StylesRefinement Vs. Realization Styles
■ Refinement Architectural Style:

� “Anyplace 2 attributes have to be in sync, use…”
�Style 1: “… 2 copies with update protocol”
�Style 2: “… 1 copy in shared memory”
�Style 3: “… 1 copy and query for the other”

■ Realization Architectural Style
� “2 copies with update” is a pre-defined construct

■ Realization style is just a special case of refinement
style

New

www.catalysis.org 50

Section Summary - Architecture in CatalysisSection Summary - Architecture in Catalysis

Full Implementation
Source Code, Database Definitions,
Modules, Hardware, Distribution, ...

Event / Property /
Method View

Functional
Requirements View

Object / Relational
Mapping View

Concurrency
View

Event / Property /
Method Style ORM Style Concurrency Style

<<refine>>
mapping

<<refine>>
mapping <<refine>>

mapping

<<refine>>
mapping

Func-Req Style

Architecture = Abstraction or View covering some concerns

Architecture Style = Language Constructs + Rules
Style can constrain the refinement i.e. how spec is realized

<<instance>

www.catalysis.org 51

OutlineOutline
■ Precise component specifications in UML

� Interfaces
■ Refinement

� Component implementation refines spec
■ What is Software Architecture?

� Common definitions and examples
� Catalysis definition of architecture
� Specifying architectural styles using OCL
� Generating architectural styles using Frameworks
� Specifying architectural styles with Stereotypes

■ Specifying component architectural styles
� Components, ports, connectors and assemblies
� Static assemblies
� Dynamic assemblies

■ Realizing component architectural styles
� The CORBA component model

■ Conclusion

www.catalysis.org 52

Formalization of Examples in OCLFormalization of Examples in OCL

■ multiple inheritance is not permitted
OclType.allInstances->forAll(T | T.supertypes->size<=1)

■ no type should introduce more than 20 new operations
OclType::inv

(operations-supertypes.operations)->size<=20

■ no operation should have more than 5 parameters
Operation::inv parameters->size<=5

■ multiple inheritance OK, unless feature name clashes
OclType::inv

supertypes.operations = supertypes.operations->asSet

■ Law of Demeter

www.catalysis.org 53

Elements + rulesElements + rules

Realization

Does not constrain realization -
a realization which uses none of
the Collection Library classes is
OK

Collection Library

Iterator Vector

Realization Context

Rules

•any unsorted collection of variable,
unbounded size is represented by a Vector
•all collection traversal is done using Iterators

Style

Constrains the realization

Justification of
Conformance

to Rules

www.catalysis.org 54

OutlineOutline
■ Precise component specifications in UML

� Interfaces
■ Refinement

� Component implementation refines spec
■ What is Software Architecture?

� Common definitions and examples
� Catalysis definition of architecture
� Specifying architectural styles using OCL
� Generative architectural styles using Frameworks
� Specifying architectural styles with Stereotypes

■ Specifying component architectural styles
� Components, ports, connectors and assemblies
� Static assemblies
� Dynamic assemblies

■ Realizing component architectural styles
� The CORBA component model

■ Conclusion

www.catalysis.org 55

FrameworksFrameworks

■ generic models with placeholders
■ generate a realization that conforms to an

architectural style
■ a collection of frameworks defines an architectural

style generatively
■ a realization conforms to the architectural style if it

can be derived by applying the frameworks in the
style to the specification model.

■ No need to check if realization conforms to
architectural style.

www.catalysis.org 56

Framework Concept at All LevelsFramework Concept at All Levels

room hotel

book library returned notify member

checked out clean room

Business Framework

Reservations
resource owner

Technical Framework

Event Broadcast
event method

room reservations

UI Framework

Master-Detail
master detail

title abstract

Library System
Reservations

Event Broadcast

Master-Detail

Hotel System
Reservations

Event Broadcast

Master-Detail

Multiple frameworks used in any app

www.catalysis.org 57

Frameworks Generate ArchitecturesFrameworks Generate Architectures

■ E.g. object-relational mapping tells you how to
design DB, not just how to check that DB conforms
to object model
�can also generate object model from existing

relational design (e.g. legacy DB)
■ Multiple inheritance disallowed is not generative

�but a constructive transformation rule that maps
multiple inheritance to delegation, forwarding
and implementing multiple interfaces is
generative

www.catalysis.org 58

Factory Pattern :
Generative Aspects

Factory Pattern :
Generative Aspects

Factory

<Abstract>Factory

make<Abstract>(): <Abstract>
post
<Abstract>.new = Set { result }

generated factory class, make methods

<Concrete>Factory

make<Abstract>(): <Concrete>

<Abstract>

<Concrete>

placeholder

www.catalysis.org 59

Applying Factory FrameworkApplying Factory Framework

Thread Solaris ThreadNT Thread

Factory

Abstract Concrete

Thread Management
Factory

Factory

AbstractConcrete

Import with substitution

www.catalysis.org 60

The Model is Automatically GeneratedThe Model is Automatically Generated

Thread Solaris ThreadNT Thread

<Thread>
Factory

<Solaris
Thread>
Factory

<NT Thread>
Factory

Thread Management

makeThread():
NT Thread

makeThread():
Solaris Thread

makeThread():
Thread
post
Thread.new
= Set { result }

www.catalysis.org 61

Factory Pattern :
Non-Generative Aspects

Factory Pattern :
Non-Generative Aspects

Factory

<Concrete>Factory

make<Abstract>(): <Concrete>

<Abstract>Factory

make<Abstract>(): <Abstract>
post
<Abstract>.new = Set { result }

non-generative constraint
whenever a new object has been created, it
was as a result of a make method
invocation on a factory object

Client

Non-generative OCL formalization:
inv effect Client::
<Abstract>.new = [[->factory.make<Abstract>]]

factory

Constraint can be enforced by translating every new <Concrete> into factory.make<Abstract>

www.catalysis.org 62

Model Frameworks - Generic ModelsModel Frameworks - Generic Models

� A generic model / design / implementation component whose
�Defines the broad generic structure and behavior
�Provides plug-points for adaptation

allocate room to
seminar session if

room facility meets
session needs...

allocate machine time
to batch lot if

machine capability
meets lot processing...

generalize

allocate resources
to jobs if resource

capability meets job req ...

plug in

room session time lot

Generic model, design, or code

www.catalysis.org 63

A Complete Seminar Business Model
� Built by specializing three different pre-existing model frameworks

Seminar Business

ResourceAlloc ResourceAlloc

CustomerTrends

Production

indication

customer

product

producer
product

item

job

resource

Topic

SeminarSession
when: DateRange

Room

RoomFacility

Instructor

InstructorSkill

inv capability == certs.skills

Certification

* skills

* certs

Copy CopyCenter

Customer

jobresource

capability
requirement requirement capability

www.catalysis.org 64

Observer Pattern as a Framework

<Observer>
isProjection(Subject): boolean

update()
post: isProjection(sub)

obs
sub *

externally: subject and observers always appear to be in sync
inv Subject:: obs->forAll (isProjection(s))

<Subject>
s: State
inv effect s<>s@pre=>
obs->forAll (o |
[[obs.update()]])

register(Observer)
unregister(Observer)

Subject - Observer

www.catalysis.org 65

Applying the Observer Pattern

■ The instantiation defines mappings of types, queries, actions
� Needed to generate the instantiation, and for the “retrieval”

PowerSwitch
isOn: boolean

turnOn
turnOff

SwitchDisplay
isRed: boolean

updateSubject
[s/isOn]

Observer
[isProjection(s)/s.isOn <=> isRed]

Power Switch Display

Subject-Observer

www.catalysis.org 66

“Specializing” Subject-Observer“Specializing” Subject-Observer

■ Do not confuse this with subtype or subclass
� The entire family of related types (playing roles) is specialized

PowerSwitch
isOn: boolean

queryState()

SwitchDisplay
isRed: boolean

setColor

Observation

TextBuffer
contents: Text

queryText()

TextWindow
display

showText

isProjection == is text the same? isProjection == sw.isOn <=> disp.isRed

Power-Switch DisplayTextDisplay

www.catalysis.org 67

Copy

T::copy(): T
post T.new->includes(result)
and result.eq(self)
and not result=self

generates

ProvisosProvisos

■ constraints on the applicability of a framework
■ defines constraints on valid substitutions

Equality

eq(T):Bool

T

inv T:: T->forAll(t | eq(t) implies t.eq(self))
-- symmetric
-- transitive

inv T:: eq(self) -- reflexive

provided T

eq(T):Bool

copy():T

Equality

www.catalysis.org 68

Frameworks for object-relational mappingFrameworks for object-relational mapping

1-Many Association Mapping

Table <A>Table

<<pK>> id : <A>Id<<fK[<A>Table]>>
a : <A>Id

Stereotypes for foreign and primary keys are defined later

generates

syntax ...

provided
A B

*

“precondition” for applying this framework

www.catalysis.org 69

Frameworks for object-relational mappingFrameworks for object-relational mapping

Supertype Mapping

<Sub>Table <Super>Table

<<pK>> id : <Super>Id<<fK[<Super>Table]>>
super : <Super>Id

<Sub>Table::inv (<Sub>Table - {self}).super->excludes(super)

generates

provided
Sub Super

“precondition” for applying this framework
<<fK>>

<<pK>>

Stereotypes similarly
defined as frameworks

www.catalysis.org 70

“Compilers”“Compilers”

■ a compiler is the most restrictive form of architecture that is useful
� the compiler generates a unique realization from the specification

■ a compiler is a mapping from specifications to realizations
� a compiler is correct if generated realization is always a refinement

Compiler
Specification

(Source Code)

Realization
(Object Code)

<<refine>> <<apply>>
obj = f (source)

www.catalysis.org 71

Limitations of generativity -
OCL at meta-level

Limitations of generativity -
OCL at meta-level

■ Not all architectural styles can be defined generatively with frameworks
� inheritance hierarchies should be no more than five levels deep

■ Language translation (e.g. compilation)
� cannot be conveniently defined using framework applications

■ In most cases, can only generate part of a realization. Part of it must be
handcrafted and then we must check that no constraints are violated.

www.catalysis.org 72

OutlineOutline
■ Precise component specifications in UML

� Interfaces
■ Refinement

� Component implementation refines spec
■ What is Software Architecture?

� Common definitions and examples
� Catalysis definition of architecture
� Specifying architectural styles using OCL
� Generating architectural styles using Frameworks
� Specifying architectural styles with Stereotypes

■ Specifying component architectural styles
� Components, ports, connectors and assemblies
� Static assemblies
� Dynamic assemblies

■ Realizing component architectural styles
� The CORBA component model

■ Conclusion

www.catalysis.org 73

Stereotypes in CatalysisStereotypes in Catalysis

■ UML language extension mechanism
■ syntactic sugar for frameworks
■ stereotype vs. framework

� technical difference
�stereotype focussed on a single model element - substitutions of

other elements inferred implicitly from context
� framework explicitly substitutes all parameters

� conceptual distinction
�stereotypes encourage meta-model extension
� frameworks define a generic library in an existing language

■ e.g. defining Java Beans language
� new elements - beans, events, properties etc.

www.catalysis.org 74

A Stereotype Definition - UML CompositionA Stereotype Definition - UML Composition

composite

Whole Part

B::inv effect
-- the lifetime of a part is subsumed by the lifetime of its composite

b.composite = b.composite@pre

*
<<aggregate>>composite

generates

syntax
Whole Part

*

Whole Part*
<<composite>>or …

aggregate

www.catalysis.org 75

A Stereotype Use = Framework ApplicationA Stereotype Use = Framework Application

Graphical Editor

Polygon Point
<<composite>>

*owner

Graphical Editor

Polygon Point*owner

composite

Part
composite

Whole

www.catalysis.org 76

Relational StereotypesRelational Stereotypes

fK[Table2]

A B

provided

<<Table>>T1 <<Table>>T2

fK[T2] : A <<pK>> b : B

T1::inv T2.allInstances.b->includes(fK[T2])

<<Table>>, <<primaryKey>>, …..

generates

www.catalysis.org 77

Section Summary - Generative ArchitectureSection Summary - Generative Architecture

■ Architectural style defines language and rules for
valid realizations of some specification
�Style = Set of <spec, realization, refinement>

■ Style either defined as constraint or “generative”

■ Generative style = construct + its realization pattern

■ Frameworks capture any model pattern
�Framework is a package
�Pattern application is import + substitute

www.catalysis.org 78

OutlineOutline
■ Precise component specifications in UML

� Interfaces
■ Refinement

� Component implementation refines spec
■ What is Software Architecture?

� Common definitions and examples
� Catalysis definition of architecture
� Specifying architectural styles using OCL
� Generating architectural styles using Frameworks
� Specifying architectural styles with Stereotypes

■ Specifying component architectural styles
� Components, ports, connectors and assemblies
� Static assemblies
� Dynamic assemblies

■ Realizing component architectural styles
� The CORBA component model

■ Conclusion

www.catalysis.org 79

Components in UML

Components interact via clearly specified interfacesComponents interact via clearly specified interfaces

Warehouse

Supplier

IDelivery

Interface

IPickup

Focus on interfaces
- precise external behavior (provided + required)
- all implementation aspects completely hidden

Focus on interfaces
- precise external behavior (provided + required)
- all implementation aspects completely hidden

www.catalysis.org 80

Component TerminologyComponent Terminology

� Component: Software chunk that can be “plugged” together with others
� Connector: A coupling between ports of two components
� Port: The “plugs” and “sockets” of an individual component
� Component Architecture Style: (a) Standard port “connector” types and rules
� Component Infrastructure: (b) Standard services for components and connectors
� Component Kit: Components designed to work together with common architecture

infrastructure services

components connector types

interface “ports”

www.catalysis.org 81

OutlineOutline
■ Precise component specifications in UML

� Interfaces
■ Refinement

� Component implementation refines spec
■ What is Software Architecture?

� Common definitions and examples
� Catalysis definition of architecture
� Specifying architectural styles using OCL
� Generating architectural styles using Frameworks
� Specifying architectural styles with Stereotypes

■ Specifying component architectural styles
� Components, ports, connectors and assemblies
� Static assemblies
� Dynamic assemblies

■ Realizing component architectural styles
� The CORBA component model

■ Conclusion

www.catalysis.org 82

Component assembly - specificationComponent assembly - specification

inv checkbox.state = contactRecord.hi-priority
inv textField.content = contactRecord.currentCall
inv effect textField.content changed implies recordSelector.searchName = textField.content
inv effect button hit implies recordSelector committed

Can check that overall behavior is correct uncluttered by connector implementation details

www.catalysis.org 83

Component assembly - code generationComponent assembly - code generation
Port code:
get/set methods for properties

e.g. CheckBox { getState(): boolean, setState(boolean), . . . }
registration and de-registration methods for events and output properties

e.g. Button { registerHitHandler(HitHandler), }
code to check for event conditions and generate events
code to check for and signal property changes

Configuration code:
code to create component and adapter instances and register them appropriately

e.g. b = new Button(); rs = new RecordSelector();
rsha = new RecordSelectorHitAdapter(rs);
b.registerHitHandler(rsha)

Connector code:
adapters to enable events to trigger method invocations

e.g. RecordSelectorHitAdapter implements HitHandler
{ handleHit() { recordSelector.commit(); } }

www.catalysis.org 84

Connector specificationsConnector specifications

a 2P bx y inv a.x = b.y

a 1P bx y inv effect a.x <>a.x@pre
implies b.y.equals(a.x)

a E b
x>z and x<=z@ pre y=y@pre+1

inv effect a.x>a.z and a.x<=a.z@pre implies b.y=b.y@pre+1

Property connectors: 2-way and 1-way

Event connectors:

www.catalysis.org 85

Snapshot connector frameworksSnapshot connector frameworks

Bidirectional Property Connector

generates

syntax

provided

a:A 2P b:Bx y

A Ba b

inv
b.y.equals(a.x)

A

x:X

B

y:X Equality
T

www.catalysis.org 86

Connector refinementsConnector refinements
The 2P connector can be realized as 2 1P connectors:

a
1P

b
x y

1Px y

since
inv effect a.x <>a.x@pre implies b.y.equals(a.x)
and
inv effect b.y <>b.y@pre implies a.x.equals(b.y)

implies inv a.x.equals(b.y)

The 1P connector can be realized as an E connector:

a E b
x<>x@pre Y.equals(a.x)

Many alternative realizations e.g. sharing
a bo

since a.x=b.y
implies a.x.equals(b.y)x y

www.catalysis.org 87

OutlineOutline
■ Precise component specifications in UML

� Interfaces
■ Refinement

� Component implementation refines spec
■ What is Software Architecture?

� Common definitions and examples
� Catalysis definition of architecture
� Specifying architectural styles using OCL
� Generating architectural styles using Frameworks
� Specifying architectural styles with Stereotypes

■ Specifying component architectural styles
� Components, ports, connectors and assemblies
� Static assemblies
� Dynamic assemblies

■ Realizing component architectural styles
� The CORBA component model

■ Conclusion

www.catalysis.org 88

Objectifying Ports and ConnectorsObjectifying Ports and Connectors

Need to objectify ports and connectors to specify dynamically evolving assemblies
- e.g. registration and de-registration may be triggered by events or property changes

A directional connector is a specialization of a connector which has two ports,
and distinguishes them as source and sink.

Connector

Component Port Connector
* **

+ actions to connect, disconnect ports etc.

e.g. a 1P bx y

means
a

x
1p

y
b

componentportconnector

www.catalysis.org 89

Attribute/Property PortsAttribute/Property Ports
3 basic varieties:
• input/output port has get and set
• input port has set only, output port has get only

Other possibilities e.g. constrained input port has set with a precondition

Ports are defined and used as stereotypes e.g.

Person

Salary: $ <<iop>>

Input/ouptut property

Component

iop: T

syntax … <<iop>> …

InOutPropPort<T>

<iop>port
value : T

set (t: T) post value = t
get (): T post result = valueinv iop = <iop>port.value

InOutPropPort<$>

<Salary>port

www.catalysis.org 90

Attribute/Property ConnectorsAttribute/Property Connectors
Bi-directional Property Connector

A simple bi-directional property connector always keeps a collection of input/output
property ports in synch:
• when any property changes, all the connected properties change to stay in synch

BiProp
Conn<X>

IOPropPort<X>

value: X

inv BiPropConn<X>:: -- all ports always have the same value
ports->forAll(port1, port2 | port1.value.equals(port2.value)

connector

Connector Port

generates

provided X Equality

www.catalysis.org 91

Applying Port / Connector at Type LevelApplying Port / Connector at Type Level
New

T

a: X

S

b: X
X

Bidirectional
Property

connector

InPropPort<X>
<a>port port

BiPropConnector<X>

connector

<<iop>> <<iop>>

www.catalysis.org 92

Snapshot connector frameworksSnapshot connector frameworks
Bi-directional Property Connector

generates

syntax

provided

a:A 2P b:Bx y

A Ba b

inv
b.<y>port.connector
=a.<x>port.connector

Bi-directional Property Connector

This implies that
b.y.equals(a.x)

A

<<iop>>x:T

B

<<iop>>y:T Equality
X

www.catalysis.org 93

Attribute/Property ConnectorsAttribute/Property Connectors

Unidirectional Property Connector

UniProp
Conn<I, O>

OutPropPort<O>

value: O

inv effect UniPropConn<X>:: -- whenever source changes, sink matches it
source.value<>source.value@pre implies sink.value.equals(source.value)

directional
connector

Connector Source

InPropPort<I>

value: I

Sink

generates

provided

The unidirectional connector guarantees that properties are kept in synch in one direction only.
If the sink value can change independently, it may, at times, be out of synch with the source value.

O I Equality

www.catalysis.org 94

Constrained Property ConnectorConstrained Property Connector

Constrained Property Connector

ConProp
Conn<I, O>

ConPropPort<I>

agree(O): Boolean

inv effect UniPropConn<X>:: -- sink must agree to any change in the source
source.value<>source.value@pre implies sink.agree(source.value)

Unidirectional
property

connector<I,O>
UniProp
Conn<I,O>

InProp
Port<I>

generates

The constrained property connector is a specialization of the unidirectional property
connector, in which the sink can veto a change to the source value.

www.catalysis.org 95

Event PortsEvent Ports
2 varieties - output event ports that generate events, input event ports that handle them

output event

An effect is a named state change.
Events are always generated as a result of state changes.
An input event port is an adapter for an operation on the component.

An output event port realization will include registration/de-registration operations.

Component

effect oe

OutEventPort

<oe>port

effect epost <oe>port.e

www.catalysis.org 96

Event connectorEvent connector

Event Connector

Event
Conn

InEventPort

op()

inv effect EventConn:: -- whenever event occurs, operation is invoked
source.e implies [[sink.op()]]

directional
connector

Connector Sink

OutEventPort

effect e

Source

generates

Generalizations are possible for parameterized events and operations.
The event connector is then parameterized by the number and type of parameters.

www.catalysis.org 97

Section Summary - Component
Architecture

Section Summary - Component
Architecture

■ Connectors couple Ports (connection points) of Components
� Connector abstracts interaction protocol and intermediaries
� Port abstracts internal structure as connection point
� Architecture style defines set of port / connector types

■ Ports and connectors provide a thinking / design tool
� Implementation is considerably more complex

■ Dynamic assembly requires objectified port / connector
� Alternately, some form of reflective access to components

■ Frameworks provide succinct application of all the above

www.catalysis.org 98

OutlineOutline
■ Precise component specifications in UML

� Interfaces
■ Refinement

� Component implementation refines spec
■ What is Software Architecture?

� Common definitions and examples
� Catalysis definition of architecture
� Specifying architectural styles using OCL
� Generating architectural styles using Frameworks
� Specifying architectural styles with Stereotypes

■ Specifying component architectural styles
� Components, ports, connectors and assemblies
� Static assemblies
� Dynamic assemblies

■ Realizing component architectural styles
� The CORBA component model

■ Conclusion

www.catalysis.org 99

CORBA component modelCORBA component model

■ Components
■ Ports

� events sources and sinks - uses cookies instead of object-ids
� attributes (properties)
� facets - provided interfaces
� receptacles - required interfaces

■ Connectors
� event emission and consumption (unicast) - static assembly
� event publication and subscription (multicast) - dynamic assembly
� facet and receptacle connection
� varieties of attribute connection

■ Homes - component managers
■ Services - transactions, persistence, security etc.

www.catalysis.org 100

Facet/Receptacle Ports and ConnectorFacet/Receptacle Ports and Connector

a FR br f inv a.r = b.f

Facets as role objects:

Each role (facet) is an observer of the shared state

www.catalysis.org 101

Events CCM realizationEvents CCM realization

output event

<<Component>> C

subscribe<oe>
(in ec : <oe>Consumer) : Cookie

post channel<oe>(result) = Set {ec }
unsubscribe<oe>
(in c : Cookie) : <oe>Consumer

pre channel<oe>(c)->notEmpty
post channel<oe>(c)->isEmpty
and result=channel<published>(c)@pre

interface generation

specification generation

<oe>
Consumer

<oe>
*

channel<oe>
(Cookie) 0..1

Parameterized event input port

www.catalysis.org 102

CCM HomesCCM Homes

Home

<<Compt>> C

Homes manage sets of components - they include
factory methods and methods to find components
by primary key

inv Home:: -- components are managed by exactly one home
Home.allInstances->excluding(self).managedComponents
->intersect(self.managedComponents)->isEmpty

Home

*

create(): <Component>
post <Component>.new
= Set { result }

www.catalysis.org 103

Transactions and Txn PoliciesTransactions and Txn Policies

Txn

operation T::Txn(): Bool
post result = false implies s.equals(s@pre)

T
s:S

Txn():Bool
Equality

Policies: transaction required, transaction supported etc.

generates

provided

www.catalysis.org 104

Nested TransactionsNested Transactions
Nested Txn

Parent

<<txn>>m
Child1

<<txn>>m1

Child2

<<txn>>m2

provided

generates

•A state model showing the composition of m in terms of m1 and m2,
including rollback from failed invocations of m1 and m2

•Reifications of invocations of m, m1 and m2 as objects, with
Boolean attribute, success

•Invariants relating the success of the m1, m2 to success of m

www.catalysis.org 105

Styles Vs. Style ImplementationsStyles Vs. Style Implementations

My Assembly
RealizationConnectors are re-interpreted

according to their CCM definitions

Compt Arch Style Spec

Event Port Spec Event Conn. Spec

snapshot frameworks
specifying ports and connectors used in my assembly

My Assembly Spec

COM Style
Impl

EJB Style
Impl

CCM Arch Style Impl

Event Port Def Event Conn. Def

<<refine>>
<<refine>> <<refine>>

<<refine>>

www.catalysis.org 106

Section Summary - Style RealizationSection Summary - Style Realization

■ An architectural style can separately define:

�Design constructs and their specification

�Corresponding implementations of those
constructs

■ Development uses those style constructs to specify

�And separately uses their implementations

www.catalysis.org 107

OutlineOutline
■ Precise component specifications in UML

� Interfaces
■ Refinement

� Component implementation refines spec
■ What is Software Architecture?

� Common definitions and examples
� Catalysis definition of architecture
� Specifying architectural styles using OCL
� Generating architectural styles using Frameworks
� Specifying architectural styles with Stereotypes

■ Specifying component architectural styles
� Components, ports, connectors and assemblies
� Static assemblies
� Dynamic assemblies

■ Realizing component architectural styles
� The CORBA component model

■ Conclusion

www.catalysis.org 108

Package Structure of Specification,
Architecture Model, and Style

Package Structure of Specification,
Architecture Model, and Style

Specification

Architecture

Refinement

Refinement
Arch Style

Conformance
Justification

Mapping

Validity
Justification

Conformance
Justification

Arch. Style

Defs

Constraints

Spec

Arch

Design

www.catalysis.org 109

Package Structure
of Architecture, Design and Style

Package Structure
of Architecture, Design and Style

Architecture

Design

Refinement

Refinement
Arch Style

Conformance
Justification

Mapping

Validity
Justification

Conformance
Justification

Arch. Style

Defs

Constraints

Spec

Arch

Design

www.catalysis.org 110

ConclusionConclusion
■ Form vs. Meaning

� A specification constrains the meaning of its realization

� An architectural style constrains the form (description) of its
realization
�An architectural style may be defined relative to a specification
�Styles + style implementations together define a refinement

architectural style.

� A refinement architectural style constrains the form of the
refinement mapping between a realization and a specification

�A compiler is a special case of a refinement architectural style
that generates a unique conforming realization

www.catalysis.org 111

ConclusionConclusion

■ Architectural styles can be documented as:

� A set of constraints, possibly formalized using OCL

� A collection of model elements with a set of constraints on their use

� A collection of stereotype definitions, together with a constraint such
as all model elements must be a stereotype defined in the style

■ A component architecture can be defined as a collection of frameworks

www.catalysis.org 112

ReferencesReferences

■ M. Shaw and D. Garlan, “Software Architecture - Perspectives on an
Emerging Discipline”, Prentice Hall, 1996.

■ UML 1.3 specifications (http://www.omg.org)

■ D. D’Souza and A. Wills ‘Objects, Components and Frameworks with
UML: the Catalysis approach’, Addison Wesley 1998.

■ Catalysis overviews and discussions at http://www.catalysis.org

■ L. Bass et al, “Software Architecture in Practice”, Addison-Wesley 1998

