
Appendix B UML Perspective

The Unified Modeling Language (UML) 1.0 was defined by a consortium of companies
between 1996 and 1997 and was submitted for standardization by the OMG. The compa-
nies who cosubmitted the proposal were Rational, HP, TI, Microsoft, ICON Computing,
Unisys, and MCI Systemhouse. UML 1.1 was standardized in September 1997. 

Both Catalysis authors were involved in helping shape UML, which incorporated sev-
eral Catalysis ideas. One author’s company, ICON Computing, was a cosubmitter in
defining and submitting the UML standard to the OMG.

This section briefly discusses UML and explains how we have used it in Catalysis,
including some of the extensions or interpretation we have found useful or necessary, such
as parameterized attributes, frameworks, and use cases. There are systematic approaches
to using Catalysis with existing CASE tools (refer to www.catalysis.org).

Type versus Class
UML 0.8 did not distinguish type from class; 1.0 recognizes the distinction, thanks in part
to Catalysis input. The standard UML box can have a <<class>> stereotype to indicate an
implementation class, or can have a <<type>> for an implementation-free specification. 

Combining Operation Specs
UML does not define multiple specifications for an operation. Catalysis permits two forms
of combining multiple specifications: a conformant anding of the specs, for use with sub-
typing; and the join mechanism, in which one spec can impose additional preconditions to
those defined in another view.

Frameworks
Catalysis depicts a framework application using the UML symbol for a pattern. The UML
pattern notation has no defined semantics. Catalysis has a strong semantic foundation for
frameworks; it is based on package imports and substitution. In addition to defining design
patterns and domain-specific modeling patterns, frameworks can be used to define (and
extend) the meaning of modeling constructs themselves. Type, associations, subtype—all
697



698 APPENDICES
these can be defined as frameworks, as can new constructs for workflow, event propaga-
tion, and property couplings.

Subjective Models of Containment
Catalysis gives a clear meaning to the containment of one type within another using state
types. It is unclear in UML whether a given class diagram is defining intrinsic properties
of the classes (what a theoretician might call axioms) or defining properties that happen to
be true in the context of the containing type (theorems, based on constraints specific to the
container).

const versus {frozen}

Catalysis uses an explicit const annotation to describe attributes that always refer to the
same object. UML uses {frozen} and “composition” in sometimes unclear ways.

Stereotypes
UML provides the stereotype mechanism for extensibility. It has several weaknesses:

• There is no way to define the meaning of a stereotype and no mechanism for grouping 

stereotypes that can be meaningfully used together. 

• A stereotype is attached to a single element; it cannot be used for a multi-way pattern.

• Only one stereotype can be attached to an element. UML permits a stereotype to be 

defined as a combination of several others. This arrangement causes problems with 

combinatorial explosion as well as lack of semantics. 

Catalysis uses model frameworks for extensibility; stereotypes are only one special (and
limited) syntax for applying a framework.

Attributes versus Operations
UML treats attributes on a <<type>> as abstract but does not permit attributes to take
parameters; instead, you can use an operation that has been marked as read-only. Catalysis
encourages a slightly different way of thinking about an object: Some things are abstrac-
tions of its state, and others are abstractions of its behaviors. Attributes, parameterized
attributes, and invariants all help to define the model of state; operation specifications
define the behaviors. There are no preconditions and postconditions on attributes, because
they represent state; there can be conditional invariants on an attribute, and there can be
syntactic shortcuts for expressing them, but they are not pre- and postconditions:

inv Man:: married ==> wife <> null

In Catalysis an attribute does not imply an access method; you would have to explicitly
add one (or use a framework as a shortcut).



Appendix B UML Perspective 699
Sets and Flat Sets
Catalysis makes a distinction between sets and flat sets. By default, traversing a “*” asso-
ciation yields a flat set; further traversals also yield flat sets rather than sets of sets. How-
ever, you can always explicitly annotate a different type if needed; so you can, when
needed, deal with sets of sets; UML/OCL does not permit this.

Primitives and Values
UML provides a set of primitive types as “values.” There are no primitives in Catalysis;
every type can be defined in Catalysis itself and we do not force a distinction between
object and value. Programming “call-by-value” is easily accommodated by using a “copy”
framework: A call by value means the same as to make a copy and call by reference to the
copy.

Attribute, Role, and State
UML has three distinct constructs that remain largely unrelated to one another: an
attribute, a role in an association, and a state in a state chart. For example, a pre- and post-
condition pair cannot refer to the name of a state. In Catalysis these three constructs are
closely related. An association defines a pair of inverse attributes that are drawn differ-
ently; a state defines a Boolean attribute, and the structure of states in a state chart defines
invariants on those attributes. Transitions on a state diagram are thus no more than a
graphical depiction of action specifications. This approach provides a simpler core set of
constructs with different presentations. Actions on UML state transitions are imperative
and appear unrelated to pre- and postspecification of operations.

Packages
A UML package is used primarily as a namespace mechanism; elements in one package can
refer to elements in another by using package-qualified names. There are no strong seman-
tics associated with import; instead, a general “dependency” relationship can be defined
between packages. In Catalysis, packages and imports are fundamental to the structuring of
any model, separation of business, specification, and implementation. We do not support
arbitrary references across packages. 

Packages can be nested in UML and Catalysis. In UML, the containing package auto-
matically imports (transitively) its constituent packages. In Catalysis we much prefer to
use the proven scoping rules of programming languages (or predicate calculus or lambda
calculus). For example, a Java inner class can access members of its container and “sees”
the changes in their values; a Smalltalk block can access variables in its scope and its con-
taining class. A Catalysis nested package automatically imports its container package. If
you import a container package and rename one of its types, that renaming effectively
applies to all its contained packages that became visible to you only as a result of the
import. This provides the intuitive behavior you would expect with frameworks: A con-
tainer package can have a type parameter, T, and all its nested packages can refer to that
type T. 



700 APPENDICES
In addition, Catalysis packages let you “say more” about a type, attribute, operation,
and so on imported from another package. You can separate viewpoints and then rejoin
them in an importing package downstream using well-defined join rules.

Type System
The Catalysis type system treats types as sets and correspondingly provides type expres-
sions such as HotelGuest * Passenger:, which is the intersection of the two sets with both
sets of properties.

Parameterized Types
UML has a specific notation for parameterized types: a type box with a syntactical place
for its parameters. The semantics of such types are not defined within UML. We support
this notation in Catalysis; its semantics are entirely defined in terms of frameworks.

Activity Diagrams
UML has an activity diagram; it is given semantics roughly like that of a state diagram but
is not integrated to the other models. This is unfortunate, because the activity diagram is
offered as the UML mechanism for modeling business processes when enhanced with dia-
gramming constructs such as swimlanes. 

There is a way in Catalysis to integrate the traditional business-process notations,
including organization charting and process and activity flow and decomposition; we have
not published it as part of this book. 

Use Cases
The use case has become widely used in object methods; unfortunately, it is at least as
widely misunderstood and misused. Catalysis provides the framework of joint actions and
refinement as a way to clearly separate the specification of any action from the lower-level
protocol that might realize that action—whether or not it involves a user. Catalysis lets
you factor out common parts of use cases as effects, define exception paths via refinement,
and describe rules that affect multiple use cases as dynamic invariants.

Components
UML offers one notation to define the interface of a component (the “lollipop” notation).
Catalysis recognizes that component technology is about the connecting together of
encapsulated units. The types of these connections will vary; a given component architec-
ture will define its own types. You can define a component architecture using frameworks
and then use those frameworks to compose components as diverse as workflow, event-
property-method connections, and traditional objects. 

Components in Catalysis need not be built using object technology. The concept of a
type model and operation spec can be applied equally to a Java, C++, COBOL, or assem-
bler implementations—and therefore to legacy systems—thanks to refinement.



Appendix B UML Perspective 701
Collaboration
In Catalysis, a collaboration is defined as a set of related actions between objects. UML pro-
vides one definition for collaboration and then uses the term collaboration diagram to depict
a sequence of messages that result from a particular triggering request to an object. We con-
sidered the term use case diagram but have not seen that used consistently for anything
except the actor-level context diagram of a system.

Joint Actions
A Catalysis joint action corresponds to a use case; we prefer to separate the specification
of the net effect of a joint action—its postcondition—from the interaction sequence (one
of many possible) that realizes it. A joint action is an abstraction of that detailed interac-
tion, just as an operation invocation is an abstraction of a language-specific call-return
convention. We depict occurrences of joint actions on an interaction diagram; we have not
found any way to show this in UML.

We are uncomfortable with the treatment of use cases as objects and have found much
confusion among practitioners about what this means. Just because there are commonality
and variation across use cases does not mean that they should be modeled as objects; to do
so confuses the separation of actions (interactions that cause changes of state) and
attributes (the states that affect, and are affected by, actions). In Catalysis, what is modeled
as an action at one level of abstraction (for example, buy_product) can easily be reified
into a model object in a refinement (for example, place_order and deliver and pay actions
revolving around an order model object).

We have found many use case practitioners confused about the definition of use case:
What is its level of granularity? Does a use case always correspond to a unit of meaningful
business interaction for an actor? What if two use cases share common parts, but that part
does not form a meaningful unit of business interaction: can it still be modeled as a use
case and “used” by the other two? In Catalysis we recommend a distinction between the
action, or use case, and the effects of that action: it is easy to factor out effects that are
common across two actions.

Exceptions
Catalysis provides explicit support for specifying exceptions, for composing specifica-
tions of an action with such exceptions, and for refining abstract actions with exceptions
down to the level of operation invocation sequences and language-specific exception
mechanisms.

Capturing Rules
Catalysis static invariants (this constraint between these attributes is always true) and
dynamic invariants (any action that causes such-and-such must also cause so-and-so) let
us succinctly capture most business rules. 



702 APPENDICES
Events
The UML definition, even of an “event” is very limiting:

UML: “. . . constraint on state.” 

Events are fundamentally about changes of state, not about constraints on state.

Enumeration Types
UML/OCL has an enumeration type and a separate concept of “class attributes.” In Catal-
ysis we use shared attributes on a type, with an invariant, to provide enumeration types.

There are other important points to make regarding both UML and the Rational Unified
Process. For details, see www.catalysis.org.


