
 Chapter 15 How to Specify a

Component

To specify a type means to describe the behavior required of any object that may claim
to be of that type, regardless of its implementation. An object is a member of that type if
its behavior complies with that specification.

Documenting a type specification involves describing the relevant actions an object
participates in, and expressing the effect of those actions in terms of a type model of that
object. The specification should be satisfied by any correct implementation, and the type
model is an abstraction of any correct implementation.

In this chapter we describe concrete steps towards building a system or component type
specification, to describe how an object behaves in response to any external such as a
request to perform some action. The approach here is mostly top-down; Chapter 16, How
to Implement a Component (p.627) describes how to design the insides of a component,
and Chapter 18, How to Reverse-Engineer Types (p.671) covers how to reverse engineer a
specification from an existing implementation.

This Chapter has two main parts. Section 14.1, “Patterns for Specifying Components,”
on page 613, describes patterns often useful when building a component specification.
Section 14.2 onwards illustrates the construction of a specification for the case study.

15.1 Patterns for Specifying Components

This section gives the major steps in building a component specification.

Pattern 14.30, Specify components (p.615) motivates the extra effort involved in sepa-
rating specification of expected behavior from its implementation. Pattern 14.31, Bridge
requirements and specifications (p.617) outlines a pragmatic view of requirements, as
stated and understood by a user, and the more precise specifications that a developer might
use to understand what must be built. Pattern 14.32, Use-case led system specification
(p.619) explains why a use-case driven approach to requirements capture is prudent, but
should always be interleaved with tools of more precise specifications.
581

582 PART II MODELING WITH OBJECTS
Pattern 14.36, Construct a system behavior spec (p.628) — Pattern 14.38, Using state
charts in system type models (p.636) describe concrete techniques to build the specifica-
tion of the system of interest. Pattern 14.39, Specify component views (p.640) and Pattern
14.40, Compose Component views (p.642) explain how to show that separately specified
components, when composed together in a particular way, realize the required behavior.

A development process should not leave large “leap-of-faith” gaps between models.
Pattern 14.41, Avoid Miracles ... Refine the spec (p.644) describes how techniques of
refinement and re-factoring can help to reduce such gaps to a manageable level.

And lastly, Pattern 14.42, Interpreting Models for “Clients” (p.646) provides concrete
guidelines for reviewing formal specifications for clients or users.

Chapter 2 Static Models: Object Attributes and Invariants 583
Pattern 15.1 Specify components

Specify what you are going to build, separately from actually building it, and mostly
before you build it.

Intent
• Identify conceptual problems and obstacles early;

• Reduce misunderstandings between developers, and reduce confusion in each devel-
oper’s mind

• Lengthen product life

Considerations
Getting straight into the code can be very useful for building a quick prototype. It can

also be all you need to do, in small projects (1 person-month or so). And when you start
with existing components, a detailed specification may not be achievable with the parts
you have.

But for anything bigger, it is useful to separate out the more important design-decisions
from the less important ones: so that they can be thought about and discussed separately,
before committing too much effort into generating the dependent detail. Even for existing
components, a slightly more abstract spec is still invaluable.

After the code has been written, a spec is valuable for two purposes:

• So that those who will maintain the code after you will understand your concepts, and

update it in accordance with your vision.

• So that users (whether external or software) will have a clear understanding of what to

expect from your component. This is especially important for a component that will be

reused in different contexts that you are aware of — we are no longer in the days when

the designer of the only component that talks to yours is sitting in the next cubicle.

Strategy
Therefore, write a specification for each component — whether it is a complete soft-

ware product, or a group of just a few objects in a larger program. Exceptions can be made
for small components, and rapid-assembly products that are not expected to have a long
life.

It is not always necessary to write the specification before writing the code. Indeed, it
isn’t unusual to write some experimental code, and then go back and try to make sense of
what you’ve done.

Nor should you get the spec more than 80% done without some implementation.

584 PART II MODELING WITH OBJECTS
Consequences
It is a very common experience with anyone who uses more formal specifications, that

a single afternoon’s work on a model at the beginning of a project can raise all kinds of
subtle but important questions that would not have been noticed in writing the more con-
ventional informal requirements; and that would often not have been noticed until the cod-
ing stage —þtoo late to solve the problem coherently.

The objection is sometimes raised, that it is easy to get tied up in writing a specifica-
tion, in preference to getting on with the real work. Firstly, never wait until it is 100%
done. Secondly, the decisions you are writing down in a spec are just the most important
decisions that would have to be taken sometime in the design no matter how you approach
it. We’re only separating them out, to avoid needing to backtrack later. Any extra time
spent writing and maintaining a document is repaid within the 70-80% of the product’s life
that comes after its first delivery.

Chapter 2 Static Models: Object Attributes and Invariants 585
Pattern 15.2 Bridge requirements and specifications

Requirements are for users; specifications are for analysts and developers.

Intent
Bridge the gap between users and developers, without loss of accuracy, when specify-

ing a software product with non-software users.

Considerations
The notations we discuss in this book form a specialised language for developing and

discussing software and other systems’ behavior. It provides the benefit that we, the ana-
lysts and designers of the system, can use it to form a clear picture of what we intend to
provide for the users.

Like the language of an electrical hardware specification, a formal specification (with
diagrams and formal descriptions) is not directed at end users.

Strategy
Therefore, write and maintain two views of the specification: one in terms that users

understand, and the other in more formal terms.

They may be in separate documents, or they may be interleaved in a single document,
as we saw in Chapter 5, Effective Documentation .

There is a cycle between the two documents (or two views): use the formal statements
to form questions you use to improve the informal statements. In this way, you build a
good understanding of the users’ views, help them understand what’s possible, and keep
them well involved in the development. (Any book on Rapid Application Development
elaborates on this point.)

Vocabulary
Requirements A requirements document is a document written in terms that can

be discussed with users.

Requirements

Specifications

formalise

query
& enhance

User Analyst

 Figure 15.1 Typical user/analyst cycle with requirements and specification

586 PART II MODELING WITH OBJECTS
Specification A specification is a document primarily intended for our own use
as developers. It represents our current understanding of what
we’re providing for the users.

Consequences

Requirements management. Use a suitable tool to link clauses in the informal narrative
to the relevant elements of the specification (such as invariants and postconditions). These
requirements-management tools perform a kind of configuration management function: if
any modifications are made to one end of each mapping, the other end is highlighted.
Many-many mappings are allowed, and the linked elements can be in the same or different
documents. The tool cannot know what links to make, nor how the different elements
should be brought into line after a change occurs: but they are very useful in tracing the
propagation of updates.

Requirements and specification cycle. Requirements statements often look quite solid
when you first look at them; but as soon as you start a specification, gaps and dislocations
become painfully apparent.

Chapter 2 Static Models: Object Attributes and Invariants 587
Pattern 15.3 Use-case led system specification

Create a specification for the requirements of a system, working from use-cases.

Intent
Create a specification of a substantial software component or product.

Deliverable: Unambiguous specification of system requirements.

Inputs: There may be a business model — either written as a precursor to
this step, or shared with other systems in the same business. See
Pattern 14.2, Make a business model (p.551).

Considerations
The specification of a component goes hand-in-hand with the design for the process

within which it is used. You cannot specify the component without having some idea of
how it is going to be used; you cannot define how it will be used, without knowing some-
thing about what it does.

Strategy
Therefore, explore and document the context within which your component will be

used, as well as defining its behavior. See:

• Pattern 14.34, Make a Context Model with Use-Cases (p.623)

• Pattern 14.36, Construct a system behavior spec (p.628)

Often, the context model will yield several classes of user, each with a different view of
the system: see Pattern 14.39, Specify component views (p.640) and Pattern 14.40, Com-
pose Component views (p.642).

Vocabulary
Context model: A document describing the business processes whereby a compo-

nent is used.

Behavioral spec: A type description that defines the behavior of a component by
treating it as a single object, and its interactions with the world
around it as operations on the component.

System: A component forming a substantially self-contained product.

Consequences
There is not usually a clear order in which to perform context analysis ("use-case anal-

ysis") and system behavioral specification. There is some element of negotiation between

588 PART II MODELING WITH OBJECTS
the two: how the users will work depends on what will be provided; and what is provided
depends both on how they wish to work, and on what is possible.

Therefore, don’t attempt to finish one before proceeding to the next; and don’t insist on
doing them in one order or the other (though most people start with use-cases). Specifi-
cally, do not generate many detailed narrative use cases without iterating through a precise
modeling cycle.

System Behavior Spec

model

required behavior

system context system context

 Figure 15.2 Use case model of system context

Chapter 2 Static Models: Object Attributes and Invariants 589
Pattern 15.4 Recursive decomposition — divide and
conquer

Every specification is part of a larger implementation; and every implementation com-
poses a solution from specified components.

Objectives
Practical design.

Context
Requirement to produce a design.

Considerations
We need to break up large problems into smaller ones.

We need to decouple the design efforts on the different partial problems, so that we
don’t have to keep them all in our heads at once — or indeed, in any one head.

Strategy
Construct the implementation to a specification as some form of composition of

smaller components.

Specify each component. There may be many (or many potential) implementations of
each component. Do not consider the internal details of the components, when devising
the present implementation; they will have their own decompositions.

Do not confuse the use of a component with the definition of the component. One com-
ponent may be shared between the implementations of several others. In each use, there
may be particular restrictions or simplifications that apply; these are not part of the intrin-
sic definition of the shared part. Use packages to distinguish these.

It is not usually sufficient to say what the constituents are: the way in which they are
combined is also required.

when composing this...
think only of the recipe

and the specifications
of the constituents

 Figure 15.3 Each design should be in terms of specifications of its parts

590 PART II MODELING WITH OBJECTS
Vocabulary
Composite A relative term: the object of which a constituent forms part.

Constituent A relative term: an object that makes up a composite.

Recipe The extra information that defines how the constituents are com-
posed together to make the composite.

Known examples
• A subroutine fulfills a requirement. It is implemented as a sequence of invocations of

constituent subroutines.

• An object’s behavior is implemented with a composite of instances of smaller objects,
linked together in a collaboration.

• A hardware component is a composite of smaller components, wired according to a

defined scheme.

• The specifications of a component you are asked to design may come from a larger
design. This situation contrasts with the more user-facing situation of an end-product
design, where your team’s responsibility includes documenting the system context use-
cases (Pattern 14.32, Use-case led system specification (p.619)).

Chapter 2 Static Models: Object Attributes and Invariants 591
Pattern 15.5 Make a Context Model with Use-Cases

Capture collaborations with and around an object, component, or system, by building a
context model, showing all abstract actions (use-cases) involving the system.

Objectives
To define the scope and boundary of a system and its relation and interactions with its

immediate environment; to build the requirements spec for a system or subsystem to be
installed; or to review the context of a legacy system.

Context
If this is a subsystem within a larger design, much of this work may already be done.

Otherwise, we begin by understanding how our system works within a larger system to
meet some larger objectives. For example, if we are asked to write an order payment appli-
cation, we need first to understand the relevant procedures of the financial department,
what role is envisaged for our software, and what functions will be performed by the users
themselves, or other pieces of software.

Considerations
In general, the different parties that interact with an object each have a separate view of

its concerns. A context model should cover all external roles and interactions, at least at an
abstract level, even if split across multiple collaborations.

Many of the collaborations will follow stereotypical interaction patterns e.g. an interac-
tion which consists of log in, conduct some transactions, and log out; or make a selection,
and then operate on that selection. These can be abstracted as frameworks (Chapter 9,
Model Frameworks and Template Packages (p.371)), then applied and composed to define
the system context collaboration.

It can be difficult to understand all the operations on a system. It is easier to identify the
main user roles, which can then help define the operations and flow of information across
the system boundary.

However, there is a subjective choice here: what should you model as 2 separate roles?
For an interaction sequence: log in, conduct transaction, and log out, should you have
three separate user roles? For order fulfilment, should the order placer be modeled as a
separate role from the receiver?

How far out should you show actions? Should you just include actions that directly
involve the system? How fine-grained should the actions be?

What about time-triggered actions that have no explicit external initiator?

592 PART II MODELING WITH OBJECTS
Strategy

Scope the Context Model. A context model consists of one or more collaboration models
(Section 4.6, “Collaborations,” on page 203) focused on the object we are principally con-
cerned with (typically a software system or component) and its interactions with others
(typically people, other software, or hardware).

Summarise the interac-
tions with the system as
collaborations between the
system being specified and
other objects, building sce-
narios to validate the col-
laboration, and modeling
actions at a consistent level
of abstraction. Show all
external roles as types — also called “actors” — that participate in these actions. Also,
document those actions that can proceed concurrently on a single system, including con-
straints on concurrency. For example:

Concurrent actions: Any number of members can be borrowing or returning book copies, or

reserving book titles at the same time; a given book copy can have only one borrow or return

involving it at any time.

Besides all actions that directly involve the system, also show actions between the
external actors if they are relevant to the collaboration. If there are relevant actions even
further removed from the system, either show actors and actions one level further out, or
model them as effects (Section 4.4, “Actions and Effects,” on page 198) on the external
actors already included.

Treat the system of interest as a single object, without inter-
nal roles or objects. Be precise about the boundary of the system
you are describing in a collaboration e.g. is the database within,
or outside of that boundary? If outside, you should describe
interactions with the database; if inside, the database and all
interactions with it are abstracted into a simpler type model and
effects on that model (see Section 3.6.1 for an explanation).

Define for each object a set of responsibilities, and list them in the action section of that
type. In particular, list and document the responsibilities of the system within the context
of the larger organisation (or larger system); treat the system as part of the design of the
larger context.

Member

Shelf

Librarian LibMgmtSysrestore

check
remove

borrow
reserve

return

find

Lend_Books Collaboration

db

db

Chapter 2 Static Models: Object Attributes and Invariants 593
Scenarios. Construct scenarios
and storyboards of the pro-
jected use of the system, starting
from a known initial state. Pay
particular attention to cases
where the system’s dealings
with one object affect those with
another, and cover interleavings
of these in a scenario. Create
interaction diagrams for the sce-
narios, combining scenario nar-
rative with the diagrams; the
interaction diagrams can depict
directed arrows or joint action
occurrences (Section 4.7); this example uses the joint action notation. A scenario should
show named objects; it is usually sufficient to use generic names for them, like c1, c2, c3:
Customer, and t1, t2: Title.

As a rule, each step of the scenario that involves the system should start with an exter-
nally initiated action and include all subsequent system response, including resulting sys-
tem-initiated actions e.g. step 4 in the example above. This will serve as the starting point
to identifying and specifying system operations.

Abstract and re-refine. Abstract some of the actions to understand goals more clearly;
good high-level actions often reflect goals of the user. For example, suppose we are told
that we must deal with separate actions:

made_order(agreed_price, items);

received_invoice(amount);

received_goods(items).
We could abstract this to a higher-level action buy_goods(price, items). The postcondi-

tion is that we get and have paid for goods we have ordered. Re-refining this, we can ques-
tion whether the receipt of an invoice is relevant: so long as the goods have been ordered,
we can pay for whatever we receive, cutting out some administrative work; this option can
then be discussed with our client.

You can model the system context, and corresponding scenarios, system type model,
and action specs, at any consistent level of granularity. The actions should be refined to
the level where completion of the action accomplishes an atomic transaction with the sys-
tem, and must be completed in its entirety by the actor to be meaningfully handled by the
system.

Separate roles. Make separate context models for the system as used by different groups
of collaborators. In general the separation works best by considering the abstract collabo-
rations, rather than individual collaborators.
For example, the member and the librarian both interact with the Library system about the
different stages of an abstract ‘lend-books’ action (which encompasses borrowing, return-

1. Jo borrows Jaws

2. Pat borrows Jaws

3. Chris reserves Jaws

4. Jo returns Jaws
Chris is notified

5. Dani reserves Jaws

6. Chris borrows Jaws

Jo Pat
Chris

Dani
:Librarian

:Lib SysInitial state: Three copies
of Jaws, 1 checked out...

594 PART II MODELING WITH OBJECTS
ing, and reserving). Theirs would be one view — the system plays one role in that collab-
oration. The stock-keeper’s ‘add-books’ would affect the other collaboration of course —
you can’t lend books you haven’t got — but it isn’t part of the lend-books collaboration,
and the system plays a distinct role. So in this example, one collaboration is separated
from the rest.

Do not go overboard with separating actor roles. Specifically, if there are strong depen-
dencies in state or attributes of the actor involved across two actions, do not needlessly
split into two actor roles. For example, if the system requests authorization from an exter-
nal system for a credit card, and follows with an approval request for a payment amount
on that same card, it would be better to use a single external role for the authorization sys-
tem. Similarly, it would not be helpful to distinguish ‘reserver’, ‘borrower’, and ‘returner’
as separate roles in a library. Map the user-roles in the system context to roles in the busi-
ness model; perhaps eventually to job descriptions.

Time-Triggered Actions. In addition to explicit stimulus from exernal actors, a system
may need to respond on its own to the passage of time. Model this also as an external input
to the system, driven by a clock of arbitrarily precise frequency. Pick a suitable name for
this action e.g. end_of_day, or tick. For clarity, separately define named effects to specify
what happens at that time e.g. clear_outdated_reservations. As always, you can have mul-
tiple specifications for the action.

action System::end_of_day

post: clear_outdated_reservations

-- all expired reservations have been cleared

effect System::clear_outdated_reservations

post: -- specification of the effect of clearing all outdated reservations

Many time-triggered actions are better specified as static invariants initially:

inv System:: -- there must never be any expired reservation in the system, or,

inv Reservation:: -- cannot ever be expired

Benefit
Many of us have experience of development where the designers don’t get to meet the

end-users: that is the analysts’ prerogative. (They know how to wear smart suits, I guess.)
The effect is that although they may implement the stated requirements, they may do so in
a way that isn’t very user-friendly — simply because they don’t have a clear vision of the
context in which the system works. The context model and its documentation gets around
this, and provides a clearly scoped connection to the business model.

Chapter 2 Static Models: Object Attributes and Invariants 595
Pattern 15.6 Storyboards

Make pictures of the user interface.

Objectives
Animate the system use cases in a form that can be discussed with end users, when con-

structing a specification of a system that will have a graphical user interface.

Considerations
A rigorous specification expresses the common understanding that the developers

have, of what they intend to provide for the users. The act of constructing it raises useful
questions to put to the clients.

But it is not readily accessible to end-users who are not themselves computer people.
We therefore seek techniques that animate the specification for the end users.

Users relate most directly to what they see on the screen.

Strategy
Therefore, make a slide show of what the users will see on the screen; or a prototype.

Summarise the different screens in a chart that shows all the possible transitions from
one to another: this is the ’storyboard’. Annotate the transitions with the names of actions
— which you should have documented with their effects on the system’s state. Also anno-
tate with the story — the reasons why people would choose different routes through the
user interface.

The chart forms a state chart of the refinement of the user actions. (See Section 6.5,
“Spreadsheet — Action Refinement,” on page 279, and Section 14.13, “Action Reifica-
tion,” on page 576). Once the chart is complete, abstract the major actions from the GUI
detail: the latter may change between now and the implementation, but the major actions
are what you require at present.

When discussing the storyboard with users, let them get involved in the detail of the
GUI at first: this will help fire their imaginations; but later, make the point that the detail
can be changed later, and what we want now is the major actions.

(See section 14.2.3 (Storyboards), p.653, for an example.)

596 PART II MODELING WITH OBJECTS
Pattern 15.7 Construct a system behavior spec

Treating your system as a single object, define the type of any system implementation
that would meet the requirements.

Obective
To construct a type specification of (some view, or role, of) a system we are to build.

Deliverables: Type-specification of any implementation objects meeting the
requirements of this system (in the chosen role), embedded in nar-
rative documentation.

Dictionary with specific meanings of types in this model.

Snapshots are thinking tools rather than true specifications (since they only deal in par-
ticular scenarios) but may be used for illustration in the narrative.

Context
We already have a system context model (Pattern 14.34, Make a Context Model with

Use-Cases (p.623)).

Considerations
The result will nominally be a type box that defines our system as if it were a single

object (Section 6.6, “Spreadsheet — Object Refinement,” on page 288). Like all types, the

Chapter 2 Static Models: Object Attributes and Invariants 597
behavior presented to the external world — in the bottom section of the box — is specified
in terms of the hypothetical static type model — in the middle section.

Of course the whole thing won’t usually fit in one box on one page. So we split into
multiple drawings, or use “Refinement” (Chapter 6, Abstraction, Refinement, and Testing
(p.245)) to separate into subject areas.

Strategy

Separate roles. As we noted in Pattern 14.34, Make a Context Model with Use-Cases
(p.623), most objects play several roles, and, when specifying requirements, it is useful to
focus on one at a time.

So in the example shown, we have listed only the operations from the lend-books col-
laboration, and will specify those operations. Ultimately the system’s roles may be recom-
posed in preparation for designing it.

Summarise the set of actions for this role. This can essentially be read off the context
model. Actions (and hence model) should be as abstract as reasonable at first cut —not
individual keystrokes.

Member

Library

Librarian

Title

Book
*

StockKeeper

*
supervises

*

Library Management System

Member

Librarian

borrow
reserve

return

borrow (Book, Member)
reserve (Title, Member)
return (Book)

find

find (String, out Title)

List of actions repeated here

Collaborations & responsibilities
of system from Context Model

Initial type model adopted from
Business Model
Links, attributes, actions are all
subject to refinement at this stage.
Actions, if used, are only to factor the specs
of the system-level actions, as effects.

Purpose of this phase is

to specify them

borrower

*

*
reservations

*

*

held_for 0,1 0,1

1

1

catalog
*

*membership

 Figure 15.4 Initial type model derived from business model

598 PART II MODELING WITH OBJECTS
Each action needs to be given a parameter list. The parameters represent other informa-
tion that will be available to the action when implemented. They could be the parameters
of an API operation; or information that a user can be asked to enter as part of a dialogue
to which this action is refined. They can usually be read off the participants and parame-
ters in the corresponding action in the business model.
For example, reserve(Title, Member, Librarian) indicates that there is some way in which
those pieces of information can be entered — we don’t yet care how. (See Chapter 6,
Abstraction, Refinement, and Testing (p.245), for how parameters relate to action refine-
ment.)

In some cases, we may immediately decide that some information is not required — for
example Librarian in the reserve operation. This doesn’t stop you putting that information
back in a later refinement —the refinement rules allow you to add parameters, but not to
take them away; so by paring down the parameter list at the most abstract level, you are
keeping your options open.

Adopt the business model as the initial type model. That is, the model part of the type-
box defining the system. Note that this gives us two of everything: the external ‘real’
object and its model inside the system. To distinguish where this might be ambiguous, use
LibraryManagementSystem::Member and ::Member. Note, however, that actions from the
business model do not translate into internal actions that must be implemented in the sys-
tem; they are candidate ‘effects’, there just to conveniently factor out parts of the system
behavior specification.

The ultimate purpose of a type model is to support the action specs — expect to add to
it, and eventually to drop parts as irrelevant. So for a drawing-editor, we might add the
idea of a current selection. For a library management system, we might drop the business
model’s Librarian-Librarian ‘supervises’ link, since the actions expected of the system
never use it.

An alternate approach is to start minimalist: the initial type model is not known i.e.
empty, and you draw elements from the business model into the system type model as you
uncover a need for them in describing the system behaviors.

Note that the model represents the state of the whole system from its external users’
point of view — not just the business logic, and not just the software: hardware may be
included too. So if a display shows the result of some calculation, and that display is part
of the boundary the system, then that value can be an attribute in the model, even if the
software forgets it immediately after sending it to the display. It’s the system context
model that sets this boundary.

It’s important to be aware that at this stage, we are not intending to design the system
internals. The type model is just a model: although the design may well be based on it, the
designer is free to produce anything that exhibits the same list of system operations. And
in particular, the actions adopted from the business model illustrate only the model-objects
which may be involved in system-specified actions.

Exercise system queries. The most interesting actions are the ones that change the state
of the system; but that state would be unnecessary if no information ever came out of the

Chapter 2 Static Models: Object Attributes and Invariants 599
system. It should be possible to represent in a snapshot, any piece of information that a
user may wish to extract from the system. For example, from the library system type spec
on the previous page, it would be possible to draw snapshots showing who is in possession
of each book; but there is nowhere to record how long they have been borrowing it.

Build State charts of key types. This helps clarify what is required of each action and
crosscheck the model for overlooked states, operations, and combinations of these. Each
statechart shows the effect of actions in which the system collaborates on the model com-
ponent of interest. See Pattern 14.38, Using state charts in system type models (p.636).

For each state, define an invariant that relates it to other attributes in the type model.
States are boolean attributes, and can be parameterized just like attributes.

LibraryManagementSystem::Book::
-- State definitions for the above diagram:
lentTo(member) = self : (member.loaned)

-- to be lent to a Member means to be in the ‘loaned’
-- set of books for that Member.

holdingFor(member) = self : (member.held)

-- wasn’t in Business Model, had to add it!

on_shelf = (~loaned = null) and (~held = null)

Specify each action. See Pattern 14.37, Specifying a system action (p.633). The result is
an effects clause, and a review of the model.

action borrow (book, member)
pre: book.on_shelf
post: book.lentTo(member)

Exercise the spec with scenarios. Perform a walk-through of a senario and exercise the
specification, starting from the initial state of the scenario. Check that the progression of
states and system-responses is as expected from the action specs.

Review model. Delete attributes not used in any action spec; add attributes that are
needed, or that simplify the specification, and relate them to other attributes by invariants.
Delete types not used for any query or action parameter. Update the dictionary with defini-

LibraryManagementSystem::Book

on_shelf
addBook borrow(m:Member, self)

lentTo(m)

return(self) return
[title reserved

holdingFor(m)

for m]timeout
borrow (m, self)

[title not reserved]

/notify
librarian

 Figure 15.5 Statechart of a spec type

600 PART II MODELING WITH OBJECTS
tions that relate model elements to the business or domain model, its objects, and its
events.

In the Library example, drop Librarian and StockKeeper from this model. They may be
required in models for other roles of this system.

Benefit
The exercise of writing a type spec in an unambiguous language always raises issues

that are relatively inexpensive to debate at this stage. In our experience, the more precision
you aim for, the more questions you raise and the more gaps you fix.

Chapter 2 Static Models: Object Attributes and Invariants 601
Pattern 15.8 Specifying a system action

Specify an action using snapshots to help create the formal spec.

Objectives
Each system action, no matter how abstract or concrete, can be characterized by the

relation between its inputs, outputs, and states before and after the action. We want to
write action specs with pre and postconditions expressed informally and formally.

Context
We are specifying the type of a system playing a role in a collaboration; that is, the

view that its collaborators have of it. We already have a initial type model. We may
improve it in the light of what we need to say about this action, and iterate between speci-
fying actions and updating the type model.

Strategy

Write the spec informally. State in natural language what is required of it. Think in terms
of outputs, effects on external objects, and the initial and final internal state. Think also of
preconditions — interpreted precisely as the conditions under which this particular post-
condition make sense.

action return (book)

pre: — book is lent to someone

post: -- book is either back ready to be loaned again,

-- or, if someone has reserved its Title, it is held for them

Draw snapshots. Draw a snapshot conforming to your type model that shows the system
in a state conforming to the action’s precondition. Then modify it (preferably in a different
color) to show the state after the action. Intermediate states, and the order in which things
happen, are of no concern. Draw a snapshot regardless of how complex the system is,
introducing convenience or parameterized attributes to simplify matters.

‘Kidnapped’ : Title

‘Trainspotting’ : Title

: Book

: Book

: Book Jo : Member

Pat : Member

Chris : Member

borrower

reserved

held_for

held_for

 Figure 15.6 Snapshots of an action

602 PART II MODELING WITH OBJECTS
Delete links rather than whole objects. If necessary, draw an entire sequence of snap-
shots for a scenario, starting from the initial state.

Write formal pre/postconditions. Using the snapshots as a guide, write pre/postcondi-
tions in the more precise terms of the links or states. Expect to discover gaps and inconsis-
tencies. (See Section 3.4.1, “From Attributes to Operation Specification,” on page 129, for
detailed steps). Be aware of how your spec will be combined with other specs for the same
action (Section 8.1, “Sticking pieces together,” on page 350).

In this example, drawing snapshots helps us notice that an inaccuracy in the initial
attempt at the informal postcondition.

action LibraryManagementSystem:: return (book: Book)

pre: -- book is lent to someone

book.borrower <> null

post: -- book is either back ready to be loaned again,

-- or, if someone has reserved its Title but doesn’t already have a copy held

-- it is held for them

-- the book is definitely not loaned out any more

book.borrower=null and

-- if this title had more reservations than held books
if book.title@pre.(reserved > book.title.books[held_for<>null])

-- it goes on hold; the new holder used to hold no books of this title

then book.held_for <> null
and book.(not title.books@pre.held_for includes held_for)

-- otherwise if goes back on the shelf
else (book.held_for = null)

Look for cases not covered by the snapshots. The snapshots only represent a typical
example, whereas the spec must cover every possibility within the scope declared by your
precondition.

In the Library example, it would be easy to overlook the case of returning a reserved
book. But drawing snapshots for the documented scenarios (Pattern 14.34, Make a Con-
text Model with Use-Cases (p.623)) usually exposes these cases, as do state-charts (Pattern
14.38, Using state charts in system type models (p.636)).

Factor the spec into model types. If some parts of the pre or postcondition seem to be
particularly associated with types in the model, write them there as effects that you use in
the system operation specs (Section 3.8.3, “Effects factor common postconditions,” on
page 150). This helps avoid replication in the spec, and allows it to be polymorphic.
Although the type model is not necessarily a blueprint for its design, this distribution of
concerns obviously looks forward to the distribution of responsibilities in design.

effect LibraryManagementSystem::Book:: return ()

pre: borrower<>null post: etc...

Chapter 2 Static Models: Object Attributes and Invariants 603
action LibraryManagementSystem:: return(book)

post: book.return()

Don’t try to state all the effects at once. In general, we don’t specify every aspect of an
action in one go, or in one place. We will be specifying its effect from other collaborators’
viewpoints when we come to them; and we will probably also keep exceptional circum-
stances separate, just dealing with the main cases at first. An advantage of specification
with pre/postconditions is that it is easy to combine different views later; a decent tool will
readily present the combination of specifications when needed, yet the documentation can
focus on different issues separately.

Benefit
The process of formalising the action spec always raises questions about ambiguities

and omissions in requirements. It is far better to deal with them at this stage than at coding
time. Formalisation also tends to expose shortcomings in the type model, and leads to a
clear and concise vocabulary shared across team members, which will ultimately be the
basis of the design.

604 PART II MODELING WITH OBJECTS
Pattern 15.9 Using state charts in system type models

Building statecharts to find actions and effects and overlooked cases.

Objectives
Cross check the models and behavior specs. Tighten up the type model to capture dif-

ferent modes in which different combinations of attributes make sense. Take a different
perspective on the behavior specs i.e. from the point of view of each specification type,
what are all the actions that have an effect on it. Make statecharts of principal types in a
model.

This is a supplementary approach to finding the actions and their effects when creating
a system specification. Except for special cases, statecharts are not good at representing
the whole story, since they form a single object’s view of all the actions; designers ulti-
mately work better from postconditions. But where there are clear changes in state, state-
charts work well and provide a valuable cross-check for completeness.

Considerations

The states are as you choose them. By a ‘state’ in a statechart, we mean the truth or fal-
sity of some predicate i.e. just like any boolean attribute, including parameterized
attributes as well. A library book is or isn’t out on loan; it is or isn’t withdrawn from circu-
lation; it is or isn’t on the shelf. Some choices of states are obvious, because they make a
significant difference to the postconditions and preconditions of the applicable operations.
The point of a statechart is to illustrate these broad relationships between state and actions.
But depending on your point of view, you can always choose a different set of states to
illustrate — whether the book is or isn’t in poor repair, whether it is over 10 years old,
whether it is currently passing through the checkout desk, whether it is overdue for return.

Other state differences can be too subtle to record effectively on a statechart — for
example, there is a difference between a book that has been loaned five times and one that
has been out on six occasions; but unless the library’s loan policy changes qualitatively at
that number, it would be pointless, though valid, to draw separate states for ‘loaned more
(or less) than five times’, and still more so to draw separate states for each separate num-
ber of times out.

Statecharts may (but need not) focus on a single type. In this pattern, we use state-
charts to represent the state of the members of a particular type within a system type
model. A statechart can potentially be about universal truths; but we usually quantify over
one type e.g. any Book, so that the states depicted are truths about any one of its members.
We also use state charts to describe action sequence refinements in Chapter 6, Abstraction,
Refinement, and Testing (p.245).

When devising a system type model (Pattern 14.36, Construct a system behavior spec
(p.628)) we usually play an extra trick. As we’ve said, the types within such a model are at

Chapter 2 Static Models: Object Attributes and Invariants 605
that stage just there for the purposes of specifying, and although the design would typi-
cally be based on them, there is no mandate to follow them provided the externally visible
behavior is as modelled (although we usually want the design to closely follow the speci-
fication model, it may sometimes differ due to performance optimizations, or design re-
use goals). The trick is to draw a statechart for one of these specification types — for
example, Book in the Library system model — but in which the actions are those of the
system being specified — for example, reserveTitle, returnBook, deleteMember. A state-
chart can be drawn for each of several types in the system model.

The thing to keep in mind is that when a system action occurs, it may affect several
objects simultaneously. E.g. deleteMember may have the effect of marking ‘lost’ any and
every book held by that member. It is as if the operations are broadcast simultaneously to
all the objects inside the system, some of which take notice. The job of design can be seen
as one of enhancing the performance of this mechanism, and of deciding how the informa-
tion modelled as these objects will really be represented.

Strategy

Identify a type with interesting states and transitions. Some don’t have any. Any bool-
ean attributes are candidates for states. Similarly, if you have ‘optional’ attributes or asso-
ciations, there are frequently states in which those attributes must be defined. Some
continuous attributes may have values that signify a qualitative change in behavior e.g.
speed > 75mph may qualify as a ‘speeding’ state. Look also for radical differences in
behavior — eg, can be lent or not; and for equivalent manual system stages or phases; or
temporary tags or marks; or locations of an item or piece of paperwork. E.g. Book on
shelves or held at desk or with member. E.g. hotel reservation in ‘future’ folder or ‘today’
pile.

Draw transitions. At every state, decide the applicability of each operation, and link to its
result. You may discover more states at this stage, but it is okay to leave some things
underspecified for later refinement.

Label the transitions with the operations that cause them. Also mark preconditions —
the transition is only guaranteed to occur if the precondition is true; may also write post-
conditions not indicated by the change of state — e.g. increment of counter.

Use only external operations — stages in the internal workings of the system are not
states in this abstract picture. It is also sometimes useful to show state transitions for
‘effects’ that you introduced as a way to factor the action specifications. You may consider
timeouts or the arrival of particular times as external operations.

Use snapshots to illustrate what is happening to each object on each transition. This is
especially useful to clarify situations where different things are happening simultaneously
to different objects.

Formalize. States and transition-labels are usually defined informally at first. Some
attempt at formalisation raises more useful questions.

606 PART II MODELING WITH OBJECTS
• Add each state to the Dictionary. Define its meaning in the users’ world-view, taking

care to exclude and include exactly what is intended. Does ‘on shelf’ include times

when a browser is inspecting the book within the library?

• Define each state as a boolean function of the other attributes. It should be distinct from

the other states in the diagram (except those explicitly parallel or nested). If it cannot be

made distinct from another state, there is information missing from the model.

• Such state definitions are often combinations of a few boolean terms — some optional
link present, some attribute > 0, and so on. Make a table of the combinations, showing

how each state has a different combination, and identifying combinations that do not
correspond to any state. The complete set of allowed states is an invariant that should

be documented for the model.

• Define pre and postcondition labels of transitions in terms of links and attributes of this

object in system model. Each statechart applies to each object of the relevant type, can

refer to ‘self’ and to action parameters.

• As another cross-check, write a state-transition matrix. List all states on one axis, and

all actions on the other. Check that each combination has been considered, and mark it
as one of: specified, unspecified, or impossible.

• Be aware that statecharts have more than one interpretation. Does the absence of a tran-
sition between two states mean that there will never be any way in any member of this

type (including all its subtypes) of getting directly from one state to the other; or does it
just mean there are none we know about in this type, but subtypes might have some? If
the former, mark the chart, or a state therein, as “closed” using a UML stereotype

<<closed>>.

Integrate statechart information into specifications for each system action. Each
transition implies something about what an operation does to the relevant type of object.
Some operations will affect several types of object: AND the effects of these together.

Benefits
• The model is usually improved by defining states; some specifications become simpli-

fied by directly referring to states (including parameterized states), and letting the state

invariants implicitly deal with the details. e.g.

• Actions cover more cases than initially envisaged. The state chart visually highlight
less usual states in which actions can also take place, particularly when described as a

state-event matrix. This fleshes out holes in the action specs.

• Model exercised in some detail, by adopting an alternate view of the behavior of the

component, from the perspective of each of its specification types.

Chapter 2 Static Models: Object Attributes and Invariants 607
Pattern 15.10 Specify component views

Define partial views of a component, specifying behavior as seen from each interface.

Objectives
Create a specification of a system that has multiple interfaces, or many different users,

without being forced into a single description.

Deliverable: Type model of a partial view of a component.

Context
Pattern 14.32, Use-case led system specification (p.619) or Pattern 14.33, Recursive

decomposition — divide and conquer (p.621).

Considerations
1. When specifying a very large system (let’s say, a telecoms network and its surround-

ing management software) , it is usual to find that different users have different terms, and
different detailed models. What Engineering thinks of as a Phone has attributes like
line_impedance; what Accounts thinks of as a Phone has attributes such as call_charges.
What the StockKeeper thinks of as a Book includes its purchase date etc; but the Desk
staff are interested in how long it has been on loan.

We need to keep these models separate, so that we can go back and talk sensibly to the
different users in their own terms; though we also need to merge them at some point, so as
to be able to implement an integrated system.

2. When specifying any component (with user or software interfaces), there are usually
several interfaces. The different interfaces are aware of only part of the component’s state
and behavior. There may be several different classes of component that possess an inter-
face conforming to a particular model.

We need to keep the models separate, so that we can pick which interfaces a new imple-
mentation conforms to.

In a hardware analogy, many different classes of device generate a video signal; and
many different implementations accept it. Each of those devices (such as a monitor or pro-
jector) has other interfaces as well.

Strategy
Following Pattern 14.34, Make a Context Model with Use-Cases (p.623), separate the

different interfaces, one for each external role (or one for each group of roles that always
occur together). Alternatively, you may identify the component and its interfaces during
Pattern 14.33, Recursive decomposition — divide and conquer (p.621).

608 PART II MODELING WITH OBJECTS
Write a separate model for each interface. For each interface, consider only the con-
cepts that the user of that interface requires to understand. Write the model in terms mean-
ingful to that class of user.

Notice that one actor’s view of the component often includes some understanding of
the component’s effect on third parties, if the actor has some means of access to them out-
side the system. For example, suppose I press some buttons on my phone, and then say
"come to dinner at 8pm" to it: I do not expect the phone to appear at the table in the
evening; nor do I imagine that my only access to my invitees is by shovelling the food
down the wire. Instead, I understand that what I do to the phone has an effect on people
with whom I have other means of interaction.

Chapter 2 Static Models: Object Attributes and Invariants 609
Pattern 15.11 Compose Component views

Join several views of the requirements of a component.

Objectives
Make a single combined model of a component, prior to implementing it.

Context
1. We have several separately constructed views — Pattern 14.39, Specify component

views (p.640).

2. We are developing a component that has to conform to some existing interface spec-
ification — either from Pattern 14.33, Recursive decomposition — divide and conquer
(p.621), or from an externally-defined standard.

Considerations
It is not unusual to have requirements provided from several sources, all of which are

defined according to a separate set of terms and rules. The differing views can come from:

• different interfaces, to different external actors;

• different industry, legal and business constraints imposed by different organisations

and expressed in different terms.

For example, a financial system typically has not only the bare functional requirements
(of settling trades or whatever); but also must conform to the company’s business rules;
and the legal constraints; and the interface conventions of the external accountancy sys-
tems. Each of these sets of rules is defined with its own model, and each may impose its
own rules on the system.

Strategy
• Construct a common static model encompassing the concepts in each of the constituent

models. This will be the static model for the component.

– The simplest way of doing this is to import the models into a single package, and

then define invariants defining how the attributes from one view are related to

those from another, just as you would for redundant attributes. However, you

may then need a separate refinement stage to get to the code.

• The component model is a refinement of each of the views. Construct abstraction func-
tions from the component model to the attributes of the views.
(Section 6.4.2, “Documenting model conformance with a Retrieval,” on page 271).
If done fully, the abstraction functions provide a way in which the assertions of the

610 PART II MODELING WITH OBJECTS
views can be checked against the implementation.
If you use the slam-together method, the abstraction functions are trivial.??

• Join the action specifications and invariants from different views, as decribed in Chap-
ter 9, Model Frameworks and Template Packages (p.371). The covariant ’join’ seman-
tics permits different views to impose their own restrictions on the whole.

An example may be found in Section 10.8, “Heterogenous components,” on page 456.

Chapter 2 Static Models: Object Attributes and Invariants 611
Pattern 15.12 Avoid Miracles ... Refine the spec

Systematically go into more detail about actions and models, always mapping back to
the abstract versions as a sanity check.

Objectives
Bridge the gap between abstract model and implementation

Context
Most people have seen the cartoon — a big complex diagram of some outfit’s Method-

ology; it’s got all sorts of purposeful-sounding tasks, numerous feedback loops and check-
points, extensive forms and documentation templates to fill out, matrices to put check
marks against and metrics to tell you how well you are doing. Inputs to analysis at one
end, code out at the other. But in the middle of all this busy activity, all arrows converge
sooner or later on the box that says “And Then A Miracle Happens”!

We don’t have so much of that. The miracle is your creativity as a designer — there’s
no algorithm for that; but it is spread evenly over the whole process, without a phase tran-
sition in the middle. Partly, this is to do with the object approach: the software’s structure
mirrors reality. But we also can document refinements, which show the relation between a
detailed description (often a design) and a more abstract one (often a specification), map
between them, and justify choices made and key options rejected. We can also use ‘frame-
works’ (Chapter 9, Model Frameworks and Template Packages (p.371)) to memorialize
common forms of refinement as recurring patterns, again helping eliminate the magical
miracle.

Strategy

Golden rule. Wherever possible, let your design reflect the model of the problem domain
(Pattern 6.1, The OO Golden Rule (Seamlessness or Continuity) (p.307)). This makes it
much easier to bridge the gap from business models to implementations.

Design review. Focus on refinement during a design review. The designer should explain:

• how the design is a valid refinement of the specification, including documenting con-
formance (Section 6.4.2, “Documenting model conformance with a Retrieval,” on

page 271)

• justifications for particular choices made, whether based upon performance, under-
standability, previous systems, etc.

The resulting description provides the context of the problem (the specification), the
context and considerations involved (the justification), and the solution (resulting design).

612 PART II MODELING WITH OBJECTS
Rearrange the spec. When the gap between the specification and design gets larger, try to
re-arrange the specification so it’s structure is somewhat closer to the implementation. It
may be easier to rearrange the problem description itself and then map to the solution.

Frameworks. When you find a recurring pattern of transformation between spec and
design, abstract that pattern into a framework.

Chapter 2 Static Models: Object Attributes and Invariants 613
Pattern 15.13 Interpreting Models for “Clients”

Use concrete examples with familiar notations, while still enforcing strict rules about
terminology and definitions, to review and interpret formal models for customers who
may not want to see models. Strictly separate external and internal views.

Intent
Building models helps clarify requirements and designs, but the models themselves

may not be appropriate to present to the customers. You need a way to validate the
requirements, or designs, as captured in your models.

Strategy

Concrete Review. Specification models capture all possible behaviors (action specs and
statecharts) and all possible states (type model). It is always simpler to understand con-
crete examples, rather than generalized specs. To do this, review:

• scenarios: narrative and interaction diagrams that trace through a collaboration with the

system, with named objects in the initial state and consistently named objects for any

information exchanged with the system. If you show the ‘graph’ form of interaction

diagrams, use a consistent layout and position for all objects involved; this helps com-
prehension across multiple interactions.

• snapshots: drawings of the state of the business/domain, or of the state of the system.
Illustrate how the snapshots change through a scenario; this is the surest way to com-
municate their meaning to customers. The snapshots interpret the type model and static

invariants; snapshot pairs interpret the action specs and dynamic invariants.

Positive and Negative. When reviewing concrete example of behaviors and states,
include both an example that is valid according to the spec, and one that is invalid. Include
the constraints imposed by static and dynamic invariants. Generalize from the invalid
ones, and discuss how the informal specification prohibits them. Similarly, generalize the
required valid cases, and discuss how the formal specification enforces them.

Informal Specs. The formal behavior specifications start with informal narrative, and end
with much clearer narrative description (see Section 3.4.1, “From Attributes to Operation
Specification,” on page 129). Always review this narrative specification, and the defini-
tions in the Dictionary. Explain to the customer that the terms reflect the system’s view of
the domain, not necessarily every aspect of the domain itself.

Familiar Notations. When showing objects, either in snapshots or scenarios, feel free to
substitute graphical icons that are more suggestive of the objects involved. Use problem-
specific drawings to show attributes and relatioships between objects (e.g. a batch of sili-

614 PART II MODELING WITH OBJECTS
con wafers positioned inside a particular crucible in a machine), to explain the meaning of
corresponding snapshots.

Draconian Dictionary. Despite using largely informal and narrative descriptions to
review the models, you should be very particular about terminology. Treat the dictionary
as the definitive glossary; terms outside it are suspect, and should be avoided as far as pos-
sible. Re-interpret the customer’s descriptions in terms of the dictionary and have the cus-
tomer validate your description; update the dictionary with terms to make communication
easier (Section 3.8.2, ““Convenience” attributes simplify specs,” on page 149). If discus-
sions with the customer regularly evolve into long and unfocused discussions of ill-
defined terms, or if the same issue is being repeatedly re-visited, take on a more proactive
role: build models, and use them to suggest defintions and proposed interpretations of
requirements.

User-Interface Review. Customers are happy to discuss what they shoud see on the user-
interface. Start user-interface sketches early. However, use these appropriately:

• Do not get caught up in look-and-feel issues too early; focus on information

exchanged, expected behavior seen on the UI, and the flow of actions and correspond-
ing UI elements for the user.

• Any drawing of a user-interface is a particular visual presentation of a snapshot. e.g.
attributes may translate into colors; an association between two objects may show up as

master-slave lists, or relative visual positions of the graphical presentations of each

object. Every element on the user-interface should map to some element on the under-
lying model, though the names may not be exactly the same: e.g. presentation labels

map to attributes or parameters, window names map to types, buttons and menu items

map to actions. Keep this mapping consistent, and make it a part of your dictionary (at
least in the package that includes both the models and the user-interface specification

or prototypes). You are responsible to ensure the user-interface bits are kept consistent
with the underlying models.

• An appropriate review would include scenarios, corresponding user-interface proto-
types and flows, and the dictionary corresponding to the type model.

External vs. Internal Review. Be very conscious of who you are presenting to, and why.
It is a common mistake to review internal mechanisms and design decisions with a ‘cus-
tomer’ who should never even know whether you implement things that way. This is prob-
ably the most common error made when reviewing models among developers1.
Distinguish carefully between a review of a component from an external perspective (end-
users; or clients who will call your code); and a review of the internal design (for the team
that will implement that design of collaborating pieces).

1. As opposed to end users

Chapter 2 Static Models: Object Attributes and Invariants 615
The former is always centered around type models and operation specifications, and
should very rarely discuss classes and inheritance. The latter is focused on collaborations
between objects, and includes the corresponding type models of each one; it can include
many more details of code structure and re-use e.g. class inheritance.

Prototyping and vertical slices. In short-cycle development (Section 13.3, “Short-Cycle
Development,” on page 543), the most effective way to get the users’ feedback is to pro-
duce something that works minimally. The only drawback is the users’ tendency to imag-
ine that you have already done the whole thing.

15.2 Video Case Study — System Specification

15.2.1 System context
Software component will
become a part of business
process

Here we introduce the idea of a software system we wish to build, and explore the roles
it plays from the viewpoints of various users and areas of activity. Effectively, this means
zooming in on the interactions of the Business Model, to understand exactly what goes on
when, for example, a customer hires a video. It is often useful to build and compare
descriptions of what happens now (with a manual or old system) and what will happen
when our new system is installed; though only the latter is illustrated here.

This is ‘business-design’ Some of the techniques described in this section are things you might do to try to think
ahead to how people (or other pieces of software) will work with your system; it is rare to
start with clearly defined system behavior requirements; even in cases, such as telecom-
munications standards, where voluminous ‘specifications’ are available, a clear and under-
standable statements of requirements is usually not a part of these specs!

Building a prototype is an important option for many projects, and can be used as a
vehicle for finding and asking the same questions. It can be built in parallel with the sce-
narios of this section and the system specification illustrated in the next section, and will
be based on a set of classes that reflect the business model’s types directly. See
Section 13.3, “Typical Project Evolution,” on page 530, and Pattern 13.3, Short-Cycle
Development (p.543), for a discussion on prototyping.

15.2.2 Scenarios and User-Interface Sketches
Scenario = story A scenario is a story about how the system will be used. It has several benefits.

• It works as a medium for communicating with end-users, who would not be expected to

understand the more formal notation of the system specification. Most scenarios should

be defined by the users, with the goal of capturing their ideal task flow and sequence.

616 PART II MODELING WITH OBJECTS

w

m

• It helps understand the likely frequencies and sequences of use of different operations,
influencing the user interface design and internal architecture.

Important action boundaries

during scenario
In this scenario, we have highlighted the commits of major transactions on the video

store system: these are points at which the interaction is not just with the user interface,
and not just reading the business core; but represent important changes to the state of busi-
ness objects in the software. These will be the actions we focus on first when we specify
the system’s behavior.

Responsibilities are separatedThe scenario makes it clear how the responsibilities are divided between the various
parties. For example, the System expects the member card before anything else, and the

Walks in.

Selects copies of Trainspotting

and Star Trek from shelves.

Presents them at desk.

Jo: Person Fred: Clerk

Asks for membership card.

Explains membership; OK?

Selects new membership.

Asks details & fills form

Print details asks signature

Confirm

Selects hire

Swipes Jo’s new card

Scans each video

Suggest 3 days

3 days; done

$6 OK?

Get payment; mark paid

Hand over receipt & videos

Not a member.

Yes.

Gives details.

Signs

Displays form asking ne
member details.

Prints details and card.

Records new member.
(Displaying menu)

Displays: hire, member?

Displays member = Jo

for new hire
Adds video to this hire
How many days?

Charge = $6

Confirm hire
Print hire receipt

: VideoStore Syste

(Displaying menu.)(Idle.)

OK

OK

pays charge for 3 days

leaves

Jo hires Trainspotting

 Figure 15.7 A scenario for a video rental

Chapter 2 Static Models: Object Attributes and Invariants 617

m

Clerk therefore finds out that Jo is not a member at an early stage. Contrast with this sce-
nario, in which the Clerk breaks off the hire operation in order to record the new member:

Scenarios do not replace sys-
tem specs

This scenario makes it clear that the user interface is essentially modeless; but there is
no reason why the system should not be able to accommodate both scenarios. Each is just
a single example of the system’s use: this semi-formal description does not capture all of
the variations, so we need to do quite a few to get a clear idea of the main patterns. In the
end, the system specifications of the next section are the definitive specification.

We like this style of showing scenarios as they distinctly separate what each participat-
ing object does, without using any technical notation. Popular modeling tools do not sup-
port writing narratives in this manner, but instead support interaction diagrams
(Section 4.7.2, “Interaction Diagrams,” on page 206). These can sometimes be annotated
with narrative for each interaction arrow.

The next scenario describes a member making a reservation for a title.

Walks in.

Selects copies.

Presents them at desk.

Jo: Person Fred: Clerk

Selects hire

Scans each video

Asks for card

Explains membership; OK?

Selects new membership.

Asks details & fills form

Print details asks signature

Confirm

Not a member.

Yes.

Gives details.

Signs

: VideoStore Syste

(Displaying menu.)(Idle.)

OK

OK

pays charge for 3 days

leaves

Displays form asking

new member details.

Prints details and card.

Records new member.

Displays hire form

Adds video to this hire

Continues filling hire form:

Suggest 3 days

3 days; done

$6 OK?

Get payment; mark paid

Hand over receipt & videos.

Charge = $6

Conform hire
Print hire receipt

Jo hires Trainspotting (2)

 Figure 15.8 Scenario: rental with new member creation

618 PART II MODELING WITH OBJECTS

m

rm

;

ting o/
A scenario for hiring and returning videos.

Walks in; browses shelves.

Enq: “Play it again Sam”

Jo: Person Fred: Clerk

Press Title search

Types “Play Sam”

Wish to reserve?

Press New Reservation

Asks for card & swipes

(or presses Member search and

enters name)

Presses Resn>confirm

Notices Jo has 1 o/due;

Reminds Jo of this

Presses o/due flag

“Trainspotting”

Yes.

: VideoStore Syste

(Displaying menu.)
(Idle.)

Which one?

Displays Reservation fo

for “Play it again Sam”.

Blank member field.

Fills Resn member field

also shows Jo’s details

Displays Title info:

1 out, 1 held

Making a Reservation

Presents card

Displays copy list, selec
due copies out to JoOK.

Records reservation

 Figure 15.9 Scenario: reserving a title

Chapter 2 Static Models: Object Attributes and Invariants 619

m

of

s

ire
re list as

p

re.

 for Cas-

Return

m

of Casa-
Reminding customers to pick up reserved copies:

Walks in, selects Casablanca

from shelves.

Presents 2 copies to a clerk

with card

Pat: Person Fred: Clerk

Press New hire

Scans a copy

Scans other copy (returned)

Puts video in Hold Bin

Demands fine

Presses O/D flag

Gives details

Close old hire

Press Waive Fine

Receive cash for new hire

Press paid in full

Hand over receipt

Finds Casablanca in Hold Bin,
scans, returns to shelf

: VideoStore Syste

(Displaying menu.)
(Asleep.)

Disputes o/due

Displays details of copy

“Play it again Sam” with

HOLD flag and

O/D RETURN £0.80

Also displays Pat’s detail

=>sets member in new h
=>flags Casablanca in hi
‘¦HELD’

Displays original hire ato

current new hire

Current hire reappears

Delete O/D flag

Print receipt & record hi
Cancels Pat’s reservation
ablanca,

displays held copy with ‘
to Shelf’

Sets copy status = shelf

Start hire: blank hire for

Displays details of copy

blanca & adds to hire

Returning and taking out copies

Pleads poverty

OK

Give cash

Takes receipt, leaves

 Figure 15.10 Scenario: returning, waiving fines, check outs

620 PART II MODELING WITH OBJECTS

m

ay

ting on

ld bin)
15.2.3 Storyboards
UI flows from scenariosIndividual user interface windows and the flow between them can be captured as a sto-

ryboard. Each window is often associated with a particular task, at some level of abstrac-
tion; a flow sequence will refine a more abstract use case. Once again, users should be
very actively involved in the actual design of the interface, even if that means teaching
them a bit about what is achievable with the target system.

Fred: Clerk

Press Holds

Select a hirer

Calls hirer to inform

Clicks on calls count

or

Presses Cancel

Finds copy in Hold Bin,

scans & returns to shelf

: VideoStore Syste
(Displaying menu.)(Getting bored.)

Displays member details

and reservation

Increments call count,
sets last-called date=tod

Cancels Reservation,

Displays held copy with
‘Return to shelf’

Sets copy status= shelf

Displays Copy-list, selec
status=hold (those in ho
with hirers

Pestering Customers

 Figure 15.11 Scenario: reminding customers about reservations

Chapter 2 Static Models: Object Attributes and Invariants 621

02113

/5/96

cel

 out$1.00
 out$1.50

nfirmed,
hire ;
)

mber

g There

 225 3240

113

: 5/5/96

ancel

2]

member

 2
Of each type of window, at most one is visible at a time. Those strongly outlined are
always visible: the current title, copy, member, and hire. Italics show information only dis-
played in certtain states. Underlined items are hypertext links —navigation as shown.

Title Being There

Unbearable lightness of being
Being & Nothingness
Being There

Title Being There

Title search [F1]

Sellars 1978

Sale stock: 1 $8

Rent stock: 5 $1.00/day

Out: 3 O/due: 1

Reserved: 3 Held: 2

Shelf: 1

Being ThereCopy: VHS7341

Hold for VV Smith 27/3/96 2

Aquired: 24/6/94 Hires: 24

Copy Title Member status since called

VHS6345 Being There F Bloggs o/due 1/4/96 0

VHS2287 Being There Jane Doe out 8/4/96

Being There Max Hall reserve 28/3/96

VHS7341 Being There UZ Jones hold 1/4/96 1

VHS6878 Being There VV Smith hold 27/3/96 2

VHS2058 Being There shelf

(Inconsistent illustration. Unallocated reservation and copy
on shelf of same title should not exist simultaneously.)

(scan video copy)

Member: 9602113

Joined: 4/2/96
Rented: 5 videos
Long o/due: 0
No-shows: 1
Name: Fred Bloggs

Phone: 713 225 3240

P/code: M19 2EB House: 24

24 Any Street
Big Town, 78735

Addr:

DoB:

Got: 2 Reserved: 2 Held: 1

24/3/72

Notes:

Owes: $ 0

Account Save Edits

(swipe card)New Member [F9]

Hire: Fred Bloggs 96

Notes:

Days: 2 due 1

Charge:

Paid: [$ 5.00]
$5.00

Overdue: $0.80/day

Confirm Can

Being There VHS7341
Casablanca VHS8354

Hire [F3]

(While active and unco
scanning video adds to
adopts current member.

/clear Me

Reservation: Bein

Member:

Fred Bloggs, 0161

9602

Expected available

Confirm C

New Reservation [F

(Adopts current
and title.)

Held since 27/3/96

O/DUE Return F Bloggs

O/Due: 1

 Figure 15.12 Storyboard: user-interface sketches and flow of windows

622 PART II MODELING WITH OBJECTS
This is a partial viewOnly one subject area is dealt with here: the scenarios of the hires and reservations.
Moreover, only those aspects immediately visible at the user interface are shown. If the
system is expected to compile statistics about the monthly hirings of each title, that is not
apparent here, and the user interface for it is not illustrated.

It is usually necessary to draw scenarios and storyboards dealing with several subject
areas.

UI prototype is helpfulAnimations and Prototypes. A slide show illustrating the scenarios is valuable for dis-
cussing requirements with end-users. Better still is a prototype which can be taken through
many situations. A prototype should be viewed as an analysis tool, and is usually designed
very simply from the principal types in the specification model (next section) together
with a user-interface generator. In some cases, the core design of the prototype can be
adapted to form the core of the system. However, it should be a clear part of the develop-
ment plan, exactly which parts of the prototype are to be carried forward, and which are to
be thrown away. Proper development practice should be applied to those parts to be car-
ried into the design.

Context may be human users,
or larger software

Predefined context design. Throughout this study, we conjecture that we’re concerned
with building a computer ‘System’ that will work within some human context. Of course,
many of the contracts that software designers have with their clients or employers are
about building components within a larger piece of software; or a system embedded within
a complex design of many pieces of hardware.

In such cases, most of the work illustrated in this section should already have been
done; and in considerably more formality than shown here. In fact the relationship betwen
our system and its context is then exactly that of a Major Component as illustrated below
in Section 14.3, “System context diagram,” on page 656.

15.3 System context diagram

Use cases and system contextFrom the scenarios, we arrive at a picture of the system’s situation within its context.
We can summarise the major use cases that we identified as being core state changes.

SystemCustomer

VideoBusinessVideoStore *

Clerk
*

confirm member
change details
delete

hire

reserve
cancel

return

 Figure 15.13 System context diagram

Chapter 2 Static Models: Object Attributes and Invariants 623
This makes it clear that we regard our System as spanning the entire business: there is
one per VideoBusiness. It will probably be designed as a distributed system of indepen-
dent subsystems in each store; but that apsect will be captured separately.

System is modeled as one

object
More generally, any single system can be seen as an object that interacts with its envi-

ronment, which we can characterise with a type-specification. The operations it performs
can be specified in terms of a model of its state. This system model is based on the busi-
ness mdoel — it represents what the system knows about its surroundings.

15.3.1 Business vs. system context models
How is software spec related

to business?
Software systems are a part of the business and its operations, and should be a part of

business models — at least at some level of detail. So what is the link between business
models, the system context for a particular software component, and the subsequence soft-
ware specifications and designs?

User + software actions con-
stitute abstract business

actions

Suppose we want to improve some part of the business, as shown in Figure 14.1. Sup-
pose the video business today conducts its operations by some combination of manual and
automated processes. Memberships are recorded by issuing cards with unique numbers on
them; video rentals and returns are tracked in an Excel spreadsheet; and reservations are
recorded by placing a slip with the member number into the cassette cover for the title. An
as-is model of the business (’A’) represents one refinement of the essential business
requirements (’B). A corresponsing to-be model, incorporating the new target system
(‘S’), and revised business processes, will be an alternate refinement of the essential busi-
ness model; this model is based on certain expected behaviors of the system (i.e. its speci-
fication) being used in particular ways by the business actors. Section 10.8.2.4,
“Retrievals,” on page 465, illustrates with an example how a model comprised of multiple

624 PART II MODELING WITH OBJECTS
software components and manual business processes can be shown to map to the essential
business model.

The distinction is recursiveSimilarly, an internal design of the system is one refinement of the system specifica-
tion. It, in turn, is based on the individual specifications of each of the internal components
inthe design, configured so they interact in specific ways.

15.3.2 UI Scenarios vs. System Operations
Backing up from UI specificsIn identifying the system context and use cases, we have actually considered some

details of user-interfaces and fine-grained interactions; yet the system context seems to
step back to a more abstract level of use case. This process can be rationalized as follows:

• It can be helpful to make scenarios detailed enough to animate the imagination about
how the system might be used in reality, and to engage its users more actively in

designing2 this interface.

• However, realise that the GUI may change quite dramatically, from a traditional win-
dow/dialog-box approach, to direct manipulation, to a voice-driven command inter-
face. We would like to specify the main functions on the system independent of the

interface mechanisms used to use those functions.

• So we look at the scenarios and think "what are the real core state changes, and what
are the less stable GUI aspects?" — what DB or IS people would call "transaction com-
mits"; we have already begun the process by highlighting them in the storyline. Each of
these comprise a “success units” which delivers some value to the user.

B

B

S

S

S

d1

d2

d3

d4

d1

d2

d3

d4

essential business model
system specification

how to-be usage of system

realizes business requirements
how internal design of system

realizes system specification

internal design of system

as-is business
model

A

 Figure 15.14 Relationship between business, system, and design models

2. Yes, this is a design activity — albeit "external", or "business" design.

Chapter 2 Static Models: Object Attributes and Invariants 625
• Now we specify those more abstract actions, and separate the interface details to

another package e.g. when a refinement adds a particular user-interface to the "business

core".

• We also separate out queries on the core — how to look up member details, titles, etc.
Typically these will not be specified in detail, so long as the type model offers the

required information. The user-interface prototypes will capture the required query

paths that the design must support.

15.4 System specification

The main deliverable This is the deliverable of the analysis phase, though it can be somewhat more detailed
than the traditional deliverables of analysis, so as to provide a less ambiguous and more
consistent understanding of what is required of the system. A feature of an OO analysis
(by contrast with other rigorous methods) is that the description centres on a type model
derived from the business model: it is therefore easier to relate to the business, especially
when changes need to be made.

Partitioned into subject areas A Specification is best presented as a set of Subject areas — an informal division which
relies on the idea that different things can be said about a type in different places: so we
can focus separately on different aspects of a type’s relationships and the behaviour asso-
ciated with it.

With narrative, type model,
and specs

For each subject area, we will present:

• an informal description of the system’s role and knowledge in this area;

• a type model of the relevant aspects of the system’s state; which is a vehicle for
describing the operations the system can perform in this area.

• each operation-spec, given as a postcondition, written

– informally and

– formally, in terms of links in the system type model.

15.4.1 Subject areas
Membership subject area Membership

Rq 1 The System records membership of each store, including
making new members, changing their details, and deleting
them. Members who have not been heard of for ages are peri-
odically deleted.

Start informal At present we are able to give only informal descriptions of these operations:

action confirmMember (store: Store, person: Person)

-- If person is not a member of store, makes new membership relation between them

action changedDetails (m:Member, p:Person)

-- Replaces old personal details for m with the new ones in p.

626 PART II MODELING WITH OBJECTS

n
tring
ss
e

action delete (m:Member) -- Deletes m from records

action purge (Store, today:Date)

-- remove from members list all those who have not hired in > 2 years
Made precise by building sys-
tem type model

More precise descriptions can be achieved if we model the state of the system using
types adapted from the Business Model. In other words, we will assume that the system’s
internal state can in some way represent some aspects of the Business.

Parts of the Business model relevant to membership are:

Rq 2 A video Business services its customers through its Stores. A
Person may be a Member of any number of Stores.

• As we said earlier, the (Video Business) System knows about exactly one Business,
with its many stores.

Distribution deferred• This is an abstract model of the state of the whole System, and says nothing about its

construction — whether it is distributed or centralised, whether the links are database

keys or pointers, whether the types can be found in the implementation as individual
classes. These matters are all left to the design phase; a distributed object implementa-
tion, or a server-based one with remote screen-control clients would both be equally

valid choices.

• We’ve represented the membership twice — as a direct association, and also refined to

a type. The first makes it directly obvious how the relation works; the second makes it
easier to attach more detail. The invariant tells how the two are related.

• This is of course only part of the system type model — more in a moment. The diagram

can be interpreted as a set of assertions about Video Business Systems; and it so hap-
pens that there are other assertions presented later.

Precise specsThe actions can now be written in more detail, stating exactly what effects they have on
the links in this abstract picture of the system’s state. (They could all be written inside the
diagram, but we’ll move them outside to save clutter.) Snapshots help visualise the inten-
tion of the more formal statements:

Membership

StoreBusiness Perso

joined: Date
lastHire:Date

* name:S
addre
phon

* *

* *membership

members who

inv Store::membership = members.who

stores

Video Business System

action confirmMember (store: Store, person: Person)

action changedDetails (m:Member, p:Person)

action delete (m:Member)

action purge (Store, today:Date)
 Figure 15.15 Type model for membership management

Chapter 2 Static Models: Object Attributes and Invariants 627
action Video_Business_System:: confirmMember (store: Store, person: Person)

post If person is not a member of store, makes new membership relation between them

(store.members@pre[who=person]=0)

=> -- store members now include person, joined today

store.members[who=person] <>0

& store.members[who=person]::(joined=today & noShows=0)
Snapshots To understand exactly what these statements are saying, it often helps to draw ‘snap-

shots’ of the relveant parts of the system’s states before and after the operation occurs:

• From the Object Type Diagram, we see that each Store can have many links to Mem-
berships, and the name of the sheaf of links is ‘members’. This snapshot or Object
Instance Diagram shows an example store with its members. Two states are shown,
before and — in bold — after the action has occurred. In this case, a pre-existing Per-
son object (perhaps set up by the user interface) has been linked to the store through a

new Membership object.

• Snapshots show only an example of a particular occurrence of an action in a particular
situation. They are therefore used only for illustration, and are not adequate documen-
tation by themselves.

To continue with the other action specs:

action Video_Business_System:: purge (store:Store, today:Date)

post remove from members list all those not hired for > 2 years

store.members –= store.members[today–lastHire > 2.years]

action Video_Business_System:: changedDetails (m:Member, p:Person)

post m.who = p

action Video_Business_System:: delete (m:Member)

post remove m from list of members of what used to be its store

pat:Person

soho:Store jo:Person
name=”Jo”

address=”24/M19 2EB”
phone=”161 225 3240”

:Membership
:Membership

chris:Person
name=etc

:Membership
joined=6/5/96

lastHire=0

members

:Membership
joined=3/3/95

lastHire=12/12/95

name= etc
chris:Person

 Figure 15.16 Snapshot: membership action

628 PART II MODELING WITH OBJECTS

opy

itle

e

stock
(m.~members@pre).members –= m
Rental subject areaRental

Rq 3 The system records Rentals made by members. Each Rental is a
contract whereby several Copies of a video may be taken away
for an agreed period in exchange for a set charge. If any copy
is kept beyond the date it is due for return, the system records a
fine for it; the charges are made separately. The store’s rates
may vary, and are different for different video titles, and may
include discounts for long periods; but rates charged for a
rental are as they were at the time of hire.

Rq 4 Records of rentals are kept until they are no longer needed for
statistical and accounting purposes.

A Rental Item represents the hire of an individual Copy. Each Copy may have many
RentalItems, though at most one may be not yet returned.

Invariants for statesA Copy is said to be ‘out’ iff it has an unreturned hire; it is ‘o/due’ iff it is out and today
is later than the rental due date. It is ‘in’ iff not out.

Copy:: (isOut = (hires[returned=null] <> 0)

& isOD = (isOut & hires[returned=null].~items.due < today)

& isIn => not isOut)
A Rental is said to be complete iff all of its RentalItems are returned.

Rental:: isComplete = (items[returned=null] = 0)
Rental action specsSystem operations involving these types:

action hire (store:Store, to:Date, copies:Set(Copy), m:Membership)

post -- a Rental for these copies is added to this store’s list of rentals

store.hires += new Rental[member=m & from=today & due = to

& charge = (store.charge(copies.title,to–today))..sum
& items=(new RentalItem[copy:copies

& odRate=store.od_charge(copy.title)

& returned=null])]

action return (copy:Copy, store:Store)

post -- if this copy is out, this copy’s rental is marked returned

Store

Membership

*

*

RentalItem
odRate:Money C

* returned: [Date]

Rental

from: Date
due:Date

charge:Money

*items
charge(Title, Period):Money

hires

od_charge(Title):Money

member T

copy

titl
*

inv Copy::hires[returned=null]#size<= 1

hires
*

 Figure 15.17 Type model: rentals

Chapter 2 Static Models: Object Attributes and Invariants 629

opy

ntifier

: [Date]
: Date
ed: int
copy.~stock=store & copy@pre.isOut)

=> hires[returned@pre=null].returned=today

action purge(store:Store)

post -- get rid of all complete Rentals made longer than 6 years ago

store.hires –= hires@pre[isComplete & (today–from)> 6.years]
Reservations subject area Reservation

Definition of ‘hold’ A Hold represents the fact that a Copy is being kept aside for a Reservation, waitiing
for the Reserver to come and get it. A Hold not linked to a Reservation represents a Copy
which is in the Hold bin, having been held; and for which the reservation has been can-
celled, so that it should be returned to the shelves.

...with state invariants If it is ‘in’, a Copy is said to be ‘held’ if it is in the Hold Bin for some Reservation;
‘hold-cancelled’ if it is in the Hold Bin but has no Reservation; ‘shelf’ if available to be
hired; ‘sale’ if it can be sold; ‘junk’ if it has been withdrawn from circulation.

Copy:: (isHeld = (isIn & hold <> null)

& isHoldCancelled = (isHeld & hold.holding=null)

& isShelf = (isIn & not isHeld)

& isSale = (hired=0)

& isJunk = (junk <> null))
Actions relevant to these types:

action reserve (member:Membership, here:Store, title:Title)

post -- if title is in the store’s catalogue, add a Reservation for this title

title : here.catalogue

=> new Reservation

[made=today & where=here & who=member &

what=title & holding = null]

action cancel(res: Reservation)

post delete res

action return (copy:Copy, here:Store)

post -- if there are pending reservations for this title, hold copy for one of them

Store

Membership

*

*

Hold
called:[Date]

C

idecallCount:int

Reservation

made: Date 0,1
0,1

Title

name:String
details:String

*

where

who

holding

what

title

hold

0,1

*
catalogue

*

junk
got
hir

*

 Figure 15.18 Type model: reservations

630 PART II MODELING WITH OBJECTS
copy.title.reservations@pre[holding=null & where = here].size>0)

=> copy.hold.reservation:: (holding@pre=null & what=copy.title & who)

action hire (here:Store, to:Date, copies:Set(Copy), m:Membership)

post -- clear any reservations for these titles and member,
-- and clear the Hold of any copies actually taken away

delete copies.title.reservations[who=m & where=here]

& delete copies.hold
Accounting subject areaAccount

Operations relevant to these types:

action credit (ac:Account, what:Money, why:String)

post ac.items+= new AccountItem[amount=what &

reason=why and when=today]

action hire (store:Store, to:Date, copies:Set(Copy), m:Membership)

post -- add hire charge to account

(store.hires–store.old(hires))::

(member.account.items+= new AccountItem [

amount = charge & reason=”hire” & when=today])

action return (copy:Copy, here:Store)

post -- add overdue charge, if any, to account

let thisHire= copy.hires [returned@pre=null],

(thisHire::(rental.due<returned))

=> thisHire.rental.member.account += new AccountItem [

amount=thisHire::(odRate*(returned–rental.due))

& reason=”overdue” & when=thisHire.returned]

Membership Account

Account Item
amount:Money
reason:String

when:Date*

items

 Figure 15.19 Type model: accounting

Chapter 2 Static Models: Object Attributes and Invariants 631

e

ney

ey
te]
15.4.2 Putting it all together ...
‘Joining’ the models Let’s summarise the pieces of model we’ve seen so far in a single diagram. A good tool

would make it easy to switch between the topic-specific views and this large view.

Join action specs We could also bring together the various pieces of specification we’ve seen for each
action. For example, return has cropped up in several places. Its spec is the conjunciton of
them all:

action return (copy:Copy, here:Store)

Reservation

Membership

Rental

Store

Business

Title

Copy

Account

Account Item
Person

*

*

joined: Date
noShows: int

amount:Money
reason:String

when:Date

*

*

*

from: Dat
due: Date*

*

charge:Mo

name:String
details:String

*

*

name:String
address
phone *

* *

Hold
called:Date

callCount: int
0,1

0,1

identifier

RentalItem
odRate:Mon
returned: [Da*

stock
*

junk: [Date]
got: Date
hired: int

sale:Bool

Video Business System

action confirmMember (store: Store, person: Person)

action changedDetails (m:Member, p:Person)

action delete (m:Member)

action hire (to:Date, copies:Set(Copy), m:Membership)

action return (copy:Copy, store:Store)

action reserve (member:Membership, here:Store, title:Title)

action cancel(res: Reservation)

action credit (ac:Account, what:Money, why:String)

what

who

1

1 1 who1

where

 Figure 15.20 Combined type specification

632 PART II MODELING WITH OBJECTS
post

(

-- if this copy is out, this copy’s rental is marked returned

copy.~stock=store & copy.isOut@pre

=> hires[returned@pre=null].returned=today

) &

(-- add overdue charge, if any, to account

let thisHire= copy.hires [returned@pre=null],

(thisHire::(rental.due<returned))

=> thisHire.rental.member.account += new AccountItem [

amount=thisHire::(odRate*(returned–rental.due))

& reason=”overdue” & when=thisHire.returned]

) &

(-- if there are pending reservations for this title, hold copy for one of them

copy.title.reservations@pre[hold=null & where = here]->size>0)

=> copy.hold.reservation:: (@pre.hold=null & what=copy.title)

)

15.4.3 Statecharts
Statecharts for selected typesIt is often useful to express the behaviour of a system by showing diagrammatically the

effect of each of its operations of some part of its state. The ‘part of its state’ we consider
is usually (though not necessarily) one object in its model. By doing this for all the parts,
we can build a picture of the behaviour of the whole thing.

Copy

Collecting states from all sub-
ject areas

We’ve already defined various states for Copies (under ‘Rental’ and ‘Reservation’
above). Here’s a statechart for them. (Technically, it’s a statechart for the entire system,
where each state represents the truth of a predicate about any given Copy recorded within

Chapter 2 Static Models: Object Attributes and Invariants 633

isOut

serveOD

old=0

mber=m)

re] = 0)
it.). Most of the guards needed in a statechart can be made very simple by introducing con-
venience attributes, including parameterized ones, on the type model.

When a copy is created or returned, it is either held for an outstanding reservation, or
put onto the shelf. It is held if it is ‘wanted’ — that is, if there is a reservation for this title
and in this store which does not have a Hold.

Action effects in different
states become very apparent

A copy ceases to be ‘in’ when it is hired (that is, when a hire event occurs in which it is
one of the copies hired). If a copy is held and the reservation is cancelled, the copy is
either reallocated to another reservation, or becomes Hold-Cancelled until the clerk
checks it back to the shelf. The same happens if another copy of the same title is hired to
the member it’s held for.

And missing transitions and

actions surface
A statechart frequently throws up questions not noticed previously. For example, how

is a new Copy introduced? What is the operation whereby the clerk puts a hold-cancelled
copy back into the shelf?

ReserveisShelf

ReserveisHired

isIn

Reis

[today>due]

Copy

hire(t,cc,m)

ReserveisHeld

ReserveisHoldCancelled

[not wanted] wanted=

[wanted]
hire(t,cc,m) [not_me(cc, m)]
cancel(res) [res.hold.copy=self]

not_me(cc, m)=

return(self)

[self:cc]

[not wanted]

[wanted]

 (title.reservations[r, r.h

 (not (self:cc) & hold.me

& r.store=self.sto

 Figure 15.21 Copy statechart

634 PART II MODELING WITH OBJECTS

	Chapter 15 How to Specify a Component
	15.1 Patterns for Specifying Components
	Pattern 15.1 Specify components
	Intent
	Considerations
	Strategy
	Consequences

	Pattern 15.2 Bridge requirements and specifications
	Intent
	Considerations
	Strategy
	Vocabulary
	Consequences

	Pattern 15.3 Use-case led system specification
	Intent
	Considerations
	Strategy
	Vocabulary
	Consequences

	Pattern 15.4 Recursive decomposition — divide and conquer
	Objectives
	Context
	Considerations
	Strategy
	Vocabulary
	Known examples

	Pattern 15.5 Make a Context Model with Use-Cases
	Objectives
	Context
	Considerations
	Strategy
	Benefit

	Pattern 15.6 Storyboards
	Objectives
	Considerations
	Strategy

	Pattern 15.7 Construct a system behavior spec
	Obective
	Context
	Considerations
	Strategy
	Benefit

	Pattern 15.8 Specifying a system action
	Objectives
	Context
	Strategy
	Benefit

	Pattern 15.9 Using state charts in system type models
	Objectives
	Considerations
	Strategy
	Benefits

	Pattern 15.10 Specify component views
	Objectives
	Context
	Considerations
	Strategy

	Pattern 15.11 Compose Component views
	Objectives
	Context
	Considerations
	Strategy

	Pattern 15.12 Avoid Miracles ... Refine the spec
	Objectives
	Context
	Strategy

	Pattern 15.13 Interpreting Models for “Clients”
	Intent
	Strategy

	15.2 Video Case Study — System Specification
	15.2.1 � System context
	15.2.2 � Scenarios and User-Interface Sketches
	15.2.3 � Storyboards

	15.3 System context diagram
	15.3.1 � Business vs. system context models
	15.3.2 � UI Scenarios vs. System Operations

	15.4 System specification
	15.4.1 � Subject areas
	15.4.2 � Putting it all together ...
	15.4.3 � Statecharts

