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A response to the OMG’s RFI on Object Analysis and Design

1 Interoperability: the next step

OMG goals imply pre-
cise behavioral specifica-
tions.

HE OMG’s principal aims of widespread re-use and interoperability cannot be 
realized without precise definitions of interfaces and architectures1. Conform-
ance to clients’ requirements, and to standards, cannot be properly checked 

unless the behavior expected of a component can be specified unambiguously. These 
specifications must be machine processable: for re-use to work effectively, a devel-
oper’s OOA/D tools must be able to search for suitable components and check their 
conformance to requirements. In fact, the most flexible open systems need to be able 
to search for, interrogate, select, and appropriately couple components at run time.

Specification of Behavior – the OMG Need

We believe the need for such behavioral specification is a driving force behind the 
OMG’s RFI. It applies to almost all areas that OMG standards apply, from the level of 
basic object models, through interfaces and architecture for CORBA, to interfaces and 
architectures for various services such as transaction management, and up to stan-
dards for dealing with high-level aspects like compound documents, vertical applica-
tion integration, and analysis and design artifacts. 

1. Documentation of several current OMG standards suggests this need is quite urgent. 

“Conformance” is a key 
notion.

The most important concept in relation to specification is conformance: determining 
whether a server provides (at least) the behavioral guarantees that a client expects by 
virtue of their behavior specifications. Any worthwhile method of specification (in 
relation to component-built and open systems) must include a method of settling this 
question.Moreover, as there are alternate ways of defining conformance, the semantic 
basis should permit precise definition of more than one form.
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Towards IDL++ We see the next step as being the extension of IDL to cover behavioral specification 
(rather than just signatures); and the definition of a common linguistic basis between 
developer’s support tools, so that they can exchange information about component 
interfaces and architectures. We will refer to this (future) language as IDL++.

The language of the 
specs. must be extensi-
ble.

IDL++ must be sufficiently flexible that tools based on it can still communicate effec-
tively even if they do not entirely understand each others’ terms. For example, sup-
pose I place a component in a library or on the Web and specify its behavior using 
plain functional postconditions; a year later, someone searches my library with a 
requirement expressed in more sophisticated terms, that include formal stipulation of 
real-time constraints. The search tool should be able to cope with the lack of perfor-
mance traits in my specification, pulling out my component as a candidate if it looks 
feasible in plain functional terms.

OOA/D Methods and Behavior Specification

IDL++ and OOA/D 
specifications must inter-
operate.

IDL++ specifications and their corresponding implementations will be generated and 
documented through different means, including a variety of OOA/D languages and 
CASE tools. If their workproducts can be made to map to a common basic language, 
then it will be possible not only to interchange information across methods and tools 
at design time (directly and through libraries), but also for components to be able to 
advertise themselves in a commonly understood language at run time.

OOA/D methods could 
help with specification.

Furthermore, if we look around for sources for suitable extensions to IDL, we find that 
popular OOA/D methods and the more formal specification languages provide spec-
ification facilities. The former (exemplified by the Unified Method, Coad/Yourdon, 
etc.) are more oriented towards being intuitively readable but have poorly defined 
meaning: that is, they are not amenable to mechanical processing at any significant 
behavioral level, and in particular, the all-important determination of conformance to 
a specification. The formal specification languages, (such as Larch, Z, VDM and their 
OO derivatives), are much better from that point of view, but less user-friendly. 
Importantly, however, some of the more advanced OOA/D methods such as Fusion, 
Syntropy, and Catalysis combine these virtues in different degrees, and provide the 
prospect of a convergence of the worlds of CORBA specification and OOA/D.

IDL++ and OOA/D can 
meet.

This paper illustrates how diagrammatic OOA/D methods and an IDL++ (this name 
is a placeholder for such a language — we make no complete proposal here) can 
express the same set of essential constructs in specification and high-level design. We 
also show how they can be given a common semantic basis in terms of a much more 
fundamental metamodel. This is important, because it provides the common terms in 
which tools functioning in any OOA/D method can read each others’ component 
specifications.

We show how, based 
upon ‘traits’.

We define the common semantic basis in terms of the very simple idea of ‘traits’ — 
individual named characteristics of a specification. Traits provide the required preci-
sion and extensibility for a metamodel across methods and notations.

Re-focus on the RFI

So, the RFI needs are… We therefore contend that the OMG needs to hear a proposal which has the following 
characteristics (‘traits’):
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Extend IDL. Provides a basis for extending IDL to provide precise, mechanically pro-
cessable, behaviors specifications.

Conformance. Defines behavioral conformance precisely enough to enable machine-
processing, including search and selection of suitable components.

OOA/D notations. Defines a mapping from diagrammatic OOA/D notations to this 
formal basis, and possibly proposes an effect OOA/D methodology.

Refinement. Supports multiple levels of abstraction and refinement, from for exam-
ple, from use-cases through high-level specs and IDL to code.

Practical. Offers a continuum from high-precision verifiable specification and design 
to informal fast-turnaround descriptions.

In addition, since both OOA/D and specification constructs will evolve as the tech-
nology evolves (e.g. towards mobile, intelligent agents), we have one more require-
ment:

Extensible. Facilitates extensions and interoperability across specification tools speak-
ing different languages, in whatever terms they understand in common.

A short-term fix is not 
the answer.

Specifically, it is not sufficient to illustrate mappings of notations or terms to a com-
mon basis, without addressing the OMG’s larger needs: namely, of extending IDL 
with machine-manipulable behavioral specifications and other OOA/D artifacts. We 
are setting standards now that will be hard to change in the future, and merely to 
cover the models we know at present would do a longer-term disservice to users of 
OOA/D methods as they evolve.

Outline of paper

We have adopted a layered approach to this paper, as outlined here by section:

1. Interoperability demands behavior specs in IDL++ and OOA/D methods.
2. Traits and objects: the semantic basis used for defining any specification construct
3. OOA/D and IDL++: key constructs defined in terms of traits
4. How we have addressed the RFI concerns
5. Concluding observations and summary

Note that the initial sections define fundamental constructs; they will necessarily con-
tain formalisms. Most of these will be completely hidden from end users (e.g. design-
ers, modelers), who will use the specification and modeling constructs provided by 
IDL++ or OOA/D diagrams in the higher levels instead.
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2 The semantic basis: traits and objects

HIS is the basis in which to define the mapping between IDL++ and OOA/D 
notations. It provides the extensibility and precision that we require in abstract 
descriptions of behavior. The main purpose in this paper is to expose the princi-

ple for discussion, rather than show exhaustive detail. 

We use layered ‘traits’ to 
define a metamodel 
foundation.

The aim is to provide a number of layers, so that a wide range of powerful practical 
constructs can be translated to a small number of much simpler concepts. This is 
rather analogous to compiling programs into machine code: the simpler primitives 
are not practically usable; but the purposes here are (a) to ensure, by providing the 
translation, that we know what the powerful constructs mean; (b) to provide common 
terms into which different convenient notations can be translated; and (c) to provide a 
means whereby machines may process them automatically — again, rather like com-
pilation.

This semantics are presented in approximately 4 layers as described here:

End-users will typically only utilize level 4(the top layer) to specify their systems. This 
section will cover levels 1 and 2, which are the foundation and are not dealt with by 
everyday designers. Section 3 covers the top two layers. As we will show, we can 
readily accommodate finer-grained layering because of the very simple fundamental 
model of traits.

2.1 Traits

A trait — the term is borrowed from Larch [Larch] — represents an individual specifi-
cation fragment or requirement, usually with a name. It may have either an informal 
or a formal definition, or both. Typical traits include:

• Signatures: e.g.’ trait 1= understands message square_root(x:Real)’

TT

4. End-User Models

Analyst/Designer usage of OOA/D diagrams and specification constructs e.g. 
models, collaborations, refinements,...

3. Methodology Constructs

Methodology usage for definition of distinguishing high-level modeling and 
specification constructs, including diagram notations

2. Fundamental Object Model

Methodology/OMG usage to define fundamental view (or differences in view) of 
objects, actions, states, etc. i.e. definitions about the assumed nature of objects

1. Traits and Theories

A simple framework for structuring assertions for other levels
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• Postconditions: e.g. ‘trait 2= result*result==x’

• Invariants: e.g. ‘trait 3= always maintains x>0’ 

• Temporal constraints: e.g. ‘trait 4= does not allow access without login’ 

Traits can be exploited to effectively separate concerns. For example, ‘trait 5=result>=0’ 
may be another postcondition characteristic of square_root, separated from trait 2 as it 
is only of interest to some clients. Because each trait has a limited extent and scope, 
search tools can simply ignore categories of traits that they do not understand, and 
still make sense of the others. For example, if we had two candidate implementations, 
one of which guaranteed traits 1-5, while another guaranteed traits1-4, a search tool 
might offer one or both implementations to a client depending upon the traits which 
were significant for that client’s requirements.

A trait has a unique name: it may be a URL — which makes it possible for a client and 
server on opposite sides of the planet to be sure that they are both referring to exactly 
the same requirement, which may be defined in a third place. As described below, this 
enables both the simple name-based matching of traits, as well as matching based on 
examining the definition of that trait.

Traits may be just simple 
names…

The simplest use of traits is based only on trait names. Every server advertises a list of 
provided traits, and every client lists it’s required traits. A server conforms to any 
requirement that is a subset of the traits it provides. Searching for fully conformant 
servers in a directory is easy; if preferred, looser Bayesian ‘percentage’ schemes (as 
seen on Web searchers like Yahoo) can be used rather than strict matching. Simple 
trait-sets are useful in a limited domain where each trait is a name for a globally well-
understood property. Modem interoperability is an example: the dialogue always 
begins with the devices passing the identifiers of their own traits, dealing with speeds 
and encodings.

…or formulae In a more complex scheme, a trait can be a predicate formed from other traits. A 
server’s provision (a trait) is met by a client’s requirement (also a trait) iff:

provided_trait => required_trait (D 1)

Notice that there is no obligation that the provided_trait must have been defined up 
front as a derivation from the required_trait: all you have to do is establish that the 
predicate defining one implies the other. Of course, the verification is easier if one is 
derived from the other, as happens if the server was designed specifically for that cli-
ent, and if provided_trait is simply defined as “required_trait & other_things_I_do”. (See 
[Dhara] for a good discussion.)

Conformance must be 
checkable

Verification can be also done automatically if traits are limited to parameterized 1st-
order propositions (using AND, OR, NOT or =>) with universal quantifiers, of the spe-
cific form:

for all x, trait(x)= for all x, y, z, P(x,y,z) => Q(x,y) & R(y,z) ...

It is much more powerful to be able to mix quantifiers (‘for all’, ‘there is’) arbitrarily. In 
general, this means that an automatic and complete verifier may not be feasible. So a 
library search tool may miss some suitable candidates, though it should never choose 
an unsuitable one. [Zaremski]
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Traits are monotonic: no 
surprises down the line

An important characteristic of traits is that they are monotonic. If, as a client, you have 
found a server that provides the traits that you require, then you are guaranteed that, 
although it may also provide other traits in which you are not interested, none of 
those others will contradict the ones you know about. This arises naturally from the 
interpretation of conformance (D 1). Contradictory traits, like ‘(rick>20=>commit) & 
(rick>50=>abort) & (commit => not abort)’, might not all be detected mechanically, but you 
will never find a server that conforms to such a trait.

Genericity in traits Traits may be parameterized with values (and also, as we shall see, with types). This 
makes generic specifications possible. For example:

trait general_sq_root_accuracy_trait (range, accuracy, sqrt) { 
for_all range, accuracy, sqrt; // introduce terms
range float & accuracy:float => // assert type membership
general_sq_root_accuracy_trait (range, accuracy, sqrt) ==// define trait

// range is arithmetic limit, accuracy is relative to parameter
( for_all x; x:float & // this trait says nothing about non-floats

0<x & x<range // allows local limit on arithmetic range
=> abs (sqrt(x)*sqrt(x) – x )< accuracy*x // allows realistic result
)

}

Now specify a function with several traits, utilizing this generic trait:

service my_sqrt_function(x:float) 
specification: general_sq_root_accuracy_trait (32000, 1e-4, my_sqrt_function) 

& for_all x, my_sqrt_function(x)>0

Genericity helps avoid 
non-monotonic schemes

(Restriction of properties like accuracy is sometimes used to justify non-monotonic 
specification schemes. According to these ideas, one spec states a capability without 
restrictions, but further down the line, another says ‘but it only works if...’. This 
means that a client can never be sure that a server really provides the service as adver-
tised. We much prefer the monotonic ‘no surprises down the line’ interpretation, as 
parameterized traits can always be used for such purposes. That way, a client is told 
explicitly where the restrictions may arise.)

Theories

Theories define contexts A theory is a (universally) named body of knowledge about a particular topic, consist-
ing of a collection of traits. A typical theory may describe the behavior of an object (its 
type); or the properties of primitive values, for example the well-known axioms of 
logic or numbers; or may be about an operation — for example that “<” is transitive 
and irreflexive; or about the commit/rollback behaviors of a transaction scheme; or 
about the real-time properties of a function; or may be about the semantics of pro-
gramming or specification constructs. In our semantics for OOA/D, we interpret 
types, collaborations, frameworks, views, versions, all as theories.

Theories structure 
knowledge

Theories nearly always import others. In order to talk about Points, for example, you 
need to know about Real numbers, and so you import their theory. The resultant the-
ory contains the traits of the importee, just as if they had been written in place. (Notice 
that importing is not subtyping: that comes later.) Theories thus form an acyclic 
graph. They can be thought of as traits, used for extra layering and structuring.
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Theories introduce named variables, which may represent objects, functions, or types. 
A theory may define the behavior of a type by interrelating these things; or may 
extend a definition by providing further knowledge: for example, a theory of, say, 
Fibonacci numbers may be separate from (but import) the basics of integers.

trait Fibonacci NumberTheory ==
( import IntegerBasics // so that we know what an integer is

introduce fib(i) // declare a new query taking 1 parameter
axiom fibgendef== ( for_all i · i:Integer & i>2 => fib(i) == fib(i–1)+fib(i–2) )
axiom fib1== ( fib(1) == 1 ) // ‘1’ — a zero-parameter query introduced in IntegerBasics
axiom fib0== ( fib(0) == 1 ) // same for ‘0’
theorem fib2 == ( fi b(2) == 2 ) // a theorem — follows from fib1, fib0 —

// and definition of ‘2’ imported from IntegerBasics!
)

Theories “encapsulate” 
all knowledge.

This rather esoteric example illustrates how the absolute fundamentals upon which a 
method is founded — what a number is, what an object is, what a state and transition 
are, and the consequences that follow from those definitions — can be dealt with by 
this simple structuring of logical assertions. In the sections below, we show how the 
more practical specifications of business objects can be rendered down to the same 
form. Although much too detailed to be dealt with directly by designers (just like 
compiled code), this form gives an assurance that those more powerful specifications 
have a well-defined meaning; and also provides the common means whereby tools 
can communicate them.

Inference The axioms of a theory are the traits which define it. Other traits, which can be 
deduced from the axioms, are called its theorems.

A theory in itself can be thought of as a big trait. And a range of traits may be 
extracted from it, of the ‘inference rule’ form:

for all introduced_variables · all_axioms => any_theorem (D 2)

For example, in FibonacciNumberTheory we introduced the function fib. If you have any 
function corresponding to fib, that conforms to the axioms of FibonacciNumberTheory, 
then you may also believe the derived theorems about it. This is known as “theory 
export”. It makes it possible to use a theory as a context within which to make infer-
ences under a given set of assumptions; and then later to later apply the results wher-
ever the assumptions are found to be true. In turn, such proof rules may be used to 
justify the theorems of other theories. (This scheme is derived from [Mural].)

Theories are used uncon-
sciously.

Software developers make use of theories incorporating a standard body of knowl-
edge, including sets, type membership, arithmetic, predicate logic, and other funda-
mentals. On top of this, they build (using higher-level tools and concepts, such as 
OOA/D constructs offered by methodologies or specification languages) specifica-
tions and designs, which each boil down to theories about object behavior.

What do traits do for us?

Traits and theories:

• Provide the basis of a precise language of requirements. This much is also pro-
vided by ordinary predicate logic. (We actually use three-valued logic, to cope 
easily with partial functions [Cheng].)
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• Provide a notion of context. This is important, as we shall use it for any case in 
which what you are saying makes local assumptions: within the spec of a given 
system, within the meaning of a given language, within a collaboration of types.

• Provide a precise and relatively natural foundation for reasoning, using the 
extraction and application of proof rules. Even if reasoning is largely done infor-
mally — and automatically only within a restricted range — the foundation 
makes it possible always to go into such detail whenever doubt arises.

None of this shows directly at the user level: it is the engine under the hood. 

2.2 Objects and Actions

What is our fundamen-
tal model of objects?

This is the next of our semantic layers. Here we define an underlying model of what 
an object is, and build up a practical means of specifying objects and describing their 
designs, ultimately defining a diagrammatic form of the familiar OOA/D variety.

Objects

We model an object as a map (symbol ‘→’) from an object identity to a state; which in 
turn is a map from queries to other objects’ identities. Note that the OMG’s object 
model has never been formalized.

A theory of Objects trait SimpleObjectTheory == 
( import BasicMapsAndLists // Defns of ×, → etc; see [Mural]

introduce OID, Query, ParameterName, QueryName, ObjectSpace
axiom ObjectSpace == OID → Query → OID
axiom Query == QueryName × OID-list
axiom Parameter-list == ParameterName → OID 

syntax x.q(parameters) → ObjectSpace(x)(<q, parameters>) 
q(parameters) → self.q(parameters)

)

Our SimpleObjectTheory may be imported by every theory that defines object behav-
ior; there is an example in “Interpretation in traits” on page 13, which shows how 
user-level type-definitions are interpreted. Other more sophisticated theories are pos-
sible — they may also be defined, and used where necessary. 

The syntax lines define syntactic shortcuts, an interpretation of query invocations as 
more primitive non-object function calls over the object space.1

1. In a realistic system, the grammar for defining syntax would probably have to be a little 
more complex. However, this will do for now.

Queries abstract state A query is an abstract attribute; it corresponds roughly to the implementation idea of 
an instance variable, or more accurately to the idea of a hypothesized read-only func-
tion. A query implies that there is certain information somehow associated with its 
object, though there is no specific suggestion of how. In particular, there is no obliga-
tion on the designer to actually implement a function or variable with that name: just 
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so long as the information is available somehow. Queries are used to describe a cli-
ent’s idea of the state of an object: and by the principle of encapsulation, this need not 
correspond directly to the real internal structure, provided the externally-visible 
behavior is nevertheless what the client is led to expect.

Queries can have arguments, which are themselves object identifiers:

query == name × OID-list

At this level, there is no strong difference between the receiver of the query and other 
arguments — so for example ‘5+3’ can be thought of either as 5.plus(3) or plus(5,3).

By writing down traits, the queries can be interrelated:

for all m, n· m:Integer & n:Integer => m+(n.successor) == (m.successor)+n

for all h,r · h: Hotel & r: Reservation => (r.confirmed => h.hasRoom(r.dates))

Values

Primitive values, by the model we use here, are immutable objects1 (this saves us hav-
ing to invent a separate concept). ‘5’ is a reference to a universally unique object. We 
may choose to think of the integers as having a successor query, with the property that 
each takes us to another integer we have not seen before. Other queries represent all 
the other relations between integers.

Actions

1. We could also model “values” as a distinct category, but omit this option here.

Actions define behavior The externally visible behavior of an object means its response to actions. An action is 
an occurrence at the interface of an object: it is visible to objects outside. Messages are 
examples of actions; and any sequences of actions, for example making up a dialogue, 
may also be considered an action. 2

The simplest action is one that just returns a result to whoever invokes it. Just like a 
query, except that an action must be implemented by the designer.

An action may cause a change of state — that is, a change in the result of applying 
some query to a participant. (Queries themselves never change objects, by definition.) 
An action has a number of participants — the objects whose states may affect and be 
affected by the action; two of them may be distinguished as ‘receiver’ and ‘sender’. 

2. The notion of an action could also be defined formally.

Actions model all levels 
of object interactions

We use the idea of action to model any interaction between any set of objects — a sys-
tem and its external users; or a collaborating group of objects in a design. At an early 
stage of design, a single action (like ‘customer obtains cash from ATM’) may be used 
to model an interaction that is later refined into a dialogue of smaller actions (‘cus-
tomer inserts card; ATM asks for PIN;...’)3. 

3. In the general spirit of “Use-cases”
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Actions can be refined There are two important kinds of action refinement. In one case, the more detailed 
actions involve all the original participants: it is the mutual dialogue that is being 
refined. In the other, only one of the participants executes a series of actions, privately 
from the others: in other words, a method servicing a message. This distinction makes 
it plain that the concern of a specifier is to abstract away, not just from internal struc-
ture, but also from the detail at the interface. When they first invented ATMs, they had 
the general idea, and the precise dialogue was evolved later. Conversely, it often 
makes sense to write down high-level internal structure even before sorting out the 
details of external dialogue.

Every action can be spec-
ified

In every case, the action may be characterized by an ‘action spec’: that is, a description 
of the effects of the action in terms of its effect on the states (queries) of the partici-
pants. This specification can be done independently from any implementation. The 
simplest action spec is one with a postcondition: a predicate relating the states imme-
diately before and after the action. Although the action will take place over a period of 
time, a postcondition states only this relationship, and nothing of how it is achieved.

Specifying basic object behavior

Actions define object 
behaviors

An object’s behavior can be described by a set of action specs and other traits, written 
in terms of the queries. So if an object representing a point on a plane is modeled with 
a pair of queries x and y, an action spec could be written:

{ true :– x–old(x) == dx & y–old(y) == dy} move(dx,dy) 

Pre/Post pairs specify an 
action

In this notation, {pre :– post }action is a trait asserting that the action conforms to the 
postcondition under any circumstances in which the precondition is true in the prior 
state. (When the precondition is false, the postcondition just does not apply: this spec 
says nothing about the outcome. But there may be other specs of the same action 
which do apply, defining either normal or exception n behaviors.)

Action Theory

The underlying seman-
tics of objects can be 
specified as well.

Action-specs must be interpreted in a context in which the idea of a previous state of 
every OID is understood. A proper object-history treatment of this can be quite com-
plex, though again, this is below the user level; see [Utting] and others. For the pur-
poses of illustration, a simplified version might be sketched as follows. (Skip at first 
reading!)

trait ObjectActionTheory = SimpleObjectTheory & (
introduce Action, ObjectHistory, ActionInvocation
axiom ObjectHistory == ObjectSpace-list // from SimpleObjectTheory

// an object history is a series of object spaces; 
// an event history is a set of actions linking pairs of states in an ObjectHistory

axiom EventHistory == ActionInvocation × startStateInde × endStateIndex
axiom ActionInvocation == ActionName × arguments:OID-list
axiom ActionSpec == ActionName × precond[old: OID-list] × 

postcond[old:OID-list, new:OID-list]
axiom conforms (ActionSpec(an, pre, post), 

ActionInvocation(an, args), startState, endState) == 
// conformance of an indivvidual action invocation to a spec means:

( pre[startState] ⇒  post[startState, endState] )
axiom conforms (ActionSpec(an,pre,post), eventHistory, objectHostory) ==

// conformance of an entire history of events and objects to a spec means...
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(<invocation, startStateIndex, endStateIndex> : eventHistory ) ⇔
// ... that any invocation is only in the event history if it conforms individually:
conforms(ActionSpec(an, pre, post), invocation, 

ObjectHistory[startStateIndex], ObjectHistory[endStateIndex])
)

It is this theory that type definitions implicitly import. Again, a different idea of what 
an action spec means can be written as a different theory. The power of traits is that 
very little is bolted into the language.

What do models based on actions and queries give us?

• Queries abstract away from the internal structure of a design. They give the spec-
ifier a way of describing the required effects of the actions, without commitment 
to any design. There may be many designs that meet one specification.

• Actions abstract away from the details of dialogue, so that behavior of individual 
objects and collaborations between them can be discussed at a high level.

3 OOA/D and IDL++: a common base

“User-friendly” notation 
also needs semantics

INALLY we arrive at a level seen by users. Users draw diagrams to model the 
systems they build and the interfaces they require or conform to; and they gen-
erate IDL++ specifications of the components they design. Diagrams make the 

designs very readable, but we must ensure that they have a clear meaning in terms of 
more primitive constructs — partly so that they can be translated to mechanically pro-
cessable form. This is what we illustrate here. Although these examples are cast in 
terms of Catalysis, the same principles can be applied to any well-designed OOA/D 
notation.

We provide examples 
for OOA/D and IDL++

We will concentrate on what we believe to be the most important aspects common to 
all good analysis and design notations. For each aspect, we will discuss: the need for 
it; a definition; its realization in IDL++ and interpretation in traits. The same for a dia-
gram-based notation. Even visual aspects can very easily be modeled formally.

The aspects illustrated here are: 

• Specifying behavior — of components and systems.

• Designing by collaborations — between components within a system, and 
between external users and systems or elements of a business

• Abstraction and refinement — conformance and subtyping

• Generics — generic types and framework collaborations

FF
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3.1 Specifying behavior

The need Corba-IDL defines an interface as a set of typed signatures. The idea is that any client 
who wants to use the services defined by that interface can utilize any object which 
implements that interface. However, signatures themselves are woefully inadequate 
to describe the expected behavior of the server object. For example, if a client imple-
menting a DrawingEditor wishes to edit Shapes from different sources, we might 
define:

interface Shape {
void move (Vector to);
void resize (int percent);

}

One implementation might interpret the “to” parameter as a “delta” from its current 
position, another might interpret it as an absolute position in the host windowing sys-
tem’s coordinates, and a third might assume that it can only be moved when it is on 
the top layer of a multi-layer drawing.

The problem becomes greatly exacerbated as we move towards the OMG’s vision of 
plug-replaceable components which could be provided by any vendor, and, eventu-
ally, could even be provided dynamically by some brokerage agent from among all 
available objects on the Worldwide Web.

Therefore, we must support specification of the effect of an operation, the conditions 
under which it might be legally invoked, etc. In addition, we might need to specify 
outgoing messages (or, in some cases, changes to another’s model) required.

Definition Type: a set of objects which conforms to a specification of behavior. Externally-visible 
behavior is the only criterion for type membership: not internal structure, nor inherit-
ance from a given supertype, nor even having been declared to be a member of a par-
ticular type. Whereas an object is created as a member of a particular class, it is a 
member of any type to whose specification it conforms; whether or not that was 
intended when it was first designed, it can be used as a member of those types.

A type can be specified by a set of behavioral constraints, including ‘action specs’ 
(typically pre/postconditions) on individual actions, and overall temporal constraints 
on groups of actions. As noted in our basic definition of objects, action specs are nor-
mally written in terms of a model consisting of abstract query-functions.

Type Model: the set of queries used to characterize that type.

IDL++

A type can be used both to specify a complete system or an individual component 
interface. Here is an example in IDL++. We model the general idea of a Shape by say-
ing that it either covers any given point in the plane, or it doesn’t. This allows us to 
abstract away shape variations with no loss of precision or generality. Note that 
although the query covers is a function, we don’t have to define it: it is the job of any-
one who claims to have designed a Shape to define the meaning of cover, although 
even they are not required to make it available to clients or even to implement it.
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IDL++ type Shape { // The keyword type to add semantics to an IDL interface
model:

boolean covers (Point p); // General idea of a shape: covers some points
interface:

void move (Vector to);
void resize (int percent);

action specs:
move(Vector to) { true :– for_all p · old(covers(p)) <=> covers(p+to))
resize(int percent){

percent>0 :– // precondition
for_all p · there_is centre · // postcondition

old(covers(p-centre)) <=> covers((p–centre)*percent/100)}
invariants: // any additional invariants, besides query types, would be here
}

Decisions made vs. 
deferred.

This description specifies the guarantees and assumptions of services, and the model 
which defines the vocabulary for describing that contract. This model might include 
both an abstract view of “exclusive” private state of the object, as well as an abstract 
view of its connections to other (possibly shared) objects (like the Editor itself, so it 
could call-back with the “damage rectangle” information for re-painting). It defers 
decisions about the implementation of methods and data representation.

Interpretation in traits

The interface can be translated to a Trait fairly directly, in which the type, the variable 
self, and the names of the queries and actions are declared. The other aspects — signa-
tures, invariants, action specs — will become subtraits. The outer trait says that mem-
bership of the type is equivalent to conformance to all of the subtraits. 

trait ShapeTrait = ActionObjectModel & 
PointTrait & VectorTrait & BooleanTrait & IntegerTrait & (

( introduce Shape, covers, move, resize ·
Shape ⊆  OID & covers:QueryName & move:Action & resize:Action
 for_all self · 

self:Shape <=>
( ...the subtraits ... )

)

Let’s take this apart:

ShapeTrait = ActionObjectModel 
& PointTrait & VectorTrait & BooleanTrait & IntegerTrait & (

None of what we want to say would make any sense unless we know what a 
Point is, what a Boolean is, and so on: so we import those traits into Shape-
Trait: so we say that if you know ShapeTrait, then you know all there is to 
know from PointTrait etc. as well — and then we add another piece of our 
own in the lines that follow. (Some of these are probably redundant — for 
example BooleanTrait probably is already imported along with the others.)
These imports can be made explicit in the form of capsules [Fresco]. A cap-
sule can contain any combination of code and specifications: a system is a 
composition of capsules. The structure of theories and proof system in which 
proof rules may be constructed from enclosed theories comes from [Mural], a 
tool for building and structuring proofs.
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SimpleObjectTheory is imported so that we can refer to the underlying 
semantics. Notice that if we wanted to use a different underlying model of 
what an object is, we would merely have to import it. There is no problem 
with different object models co-existing, and none built into the underly-
ing framework. (Lossy) translations from one to another could be defined so 
that a search tool (for example) could make some sense of specifications 
defined upon, say, a temporal model. And again, if trait names are quoted as 
URLs, then anyone can look up an unusual model as required.

( introduce Shape, covers, move, resize · 

These names are ‘declared’ here, and will be recognized in any trait that 
imports ShapeTrait; just as PointTrait introduces Point and the operations on 
it. If any of these names is already introduced (for example, PointTrait might 
introduce move), then the new introduction is redundant.

Shape ⊆  OID & covers:QueryName & move:Action & resize:Action

These define the broad categories to which the names belong.
for_all self · self:Shape <=> ... the subtraits ...

If ever you meet any object — call it ‘self’ for now — that claims to belong to 
shape, then it will conform to the subtraits (see below); and vice versa. (When 
you meet one, it will have its own name, but we are saying this applies to 
them all, and self is just our own name for any object you apply this to.)

So now let’s look at the subtraits, that define what the characteristics of this type are.

Query signatures each produce a subtrait like:

for_all p · p:Point => (self.covers(p)):Boolean

Each action spec is a trait. We just have to slot it into place, taking care to put in ‘self’ 
wherever appropriate.

self.move(to) { to:Vector & self.inv 
:–self.inv & for_all p · old(self.covers(p)) <=> self.covers(p+to) & to:Vector)

The parameter type has moved to the precondition. “object:Type” is a predicate test-
ing type membership. If there was a return type, we would type this in the postcondi-
tion.

Any invariant is added as a conjunct of every pre and postcondition: it is something 
that should be true both before and after every operation. This particular example has 
no explicit invariants besides the signature types of queries, so we’ve written inv 
where it would appear.

Notice that this is a statement about what ‘self.move’ means, under the assumption that 
self is a member of Shape. So if there happens to be a definition of x.move where x is, for 
example, an Applet, then that definition can also be true. We don’t have to think about 
move as a separate action: just one that does different things when applied to different 
types of object. And in some cases, for example where there is a spec of the same oper-
ation in a subtype, both specifications will apply.
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Discussion By doing this, significant portions of CORBA interface descriptions could be made 
less ambiguous and verbose. By using abstract queries as illustrated here, services 
could be specified with no loss of either precision or generality. Specification of excep-
tions raised are also easily handled1.

Diagram-based models

Diagram-based notations can be given a precise meaning by rendering them into 
traits. We will illustrate this with some of the basic object modeling notations from 
Catalysis; the same approach should be possible with other notations.

Firstly, presenting a type in a box is no great semantic feat, and has exactly the same 
interpretation as the IDL++ given earlier:

In Catalysis, associations are equivalent to queries: for us, the difference is only a mat-
ter of presentation. This may be different in other notations, and would have to be 
represented in their translation to traits.

 means: 

There is an implicit reverse name ~b for the object from which b gets to this object:

∀  x:A, y:B; x.b.~b==x and y.~b.b==y

The meaning of these separated type-definitions can in turn be translated to traits as 
illustrated previously.

 means: 

If x is a member of A, then x.b is a set of members of type B; and again, there is an 
implicit reverse link.

FlatSets are an interesting and very useful variant of sets. The key property is that a 
flatset never contains other flatsets, but just their members; and applying a query to a 
flatset yields a flat set of the results of querying the members. So if we have a chain of 

1.The conventions used in ADL [ADL] could be conveniently adopted to this end.

Shape

covers (Point): boolean
// any invariants appear here

void move (Vector to)
{ true :– 
for_all p · old(covers(p)) <=> covers(p+to))};

void resize (int percent);

Model/Queries

Behaviors

A Bb> A

b : B

B

~b : A

A Bb A

b : FlatSet(B)

B

~b : A
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types  and if an member a of type A, then 

a.b.c.d is a (flat) set of D. This makes it very easy to navigate around models within 
postconditions etc., and supports more intuitive query expressions than ODMG-93.

Other variations on the association and the context in which it is used are possible. An 
optional link represents a query which may take the value NIL; relations of multiple 
arity may be represented, or where lifetimes or visibility are restricted. In all cases, it is 
essential to give a definite meaning in terms of the underlying simpler model. It is not 
sufficient to explain the usage and syntax. And though it can be helpful to give a 
‘metamodel’ which models the notation in its own terms, this is not sufficient as a 
sound basis — particularly not as a medium of interoperability.

State Diagrams

In our model, states are simply boolean queries. A state diagram simply adds some 
invariants to those boolean queries, as outlined below. Using invariants, each state is 
further defined as a predicate on the type model based on the state structure (Harel 
state-charts). State transitions then simply become a visual presentation of actions, 
with very clear semantics even for complex objects.

3.2 Collaborations

The need Much of object-oriented design is about division of responsibilities and the specifica-
tion of collaborations between objects. OOA/D methods pay careful attention to this, 
though many only produce informal or example-based models. IDL permits us to 
define the signature of an interface. Yet, most interesting IDL services (e.g. transaction 
service, relationship service) define sets of interfaces and interactions i.e. abstract 
architectures. The signature of each interface is defined formally, but the expected 
joint collaboration and sequences of interactions between the objects is defined in 
lengthy prose (e.g. see Section 10.2.1: “Typical Usage” of the Transaction Service).

Therefore, IDL++ must support defining “open” architectures [PSL]. It should capture 
the decisions being made in the OO-design (and not precipitate any decisions that are 
not implied by the OO-design). It must have rules for conformance i.e. the basis for 
determining if any claim to implement this architecture actually does so; equally, it 
could help define test suites for determining conformance. In order to specify collabo-
rations, it must include specification of both incoming and outgoing invocations for 
each interface.

A Bb C Dc d

active
onTop

atBack

Shape Shape

active, onTop, atBack: Boolean;
layer: Integer;
inv:
onTop => active & not atBack
atBack => active & not onTop
onTop <=> layer=1
atBack <=> layer > 1
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Definitions Collaboration. A collaboration is a set of actions between objects playing certain 
roles, with a temporal constraint and a set of queries defining a joint type model. It 
does not necessarily specify senders and receivers for every message send, as long as 
the permitted sequences of interactions is adequately described.

Role. A role is a place in a collaboration. Any object that plays that role must support 
every interface required of that role within that collaboration.

IDL++ collaboration Subject_Observer {
// the roles in the collaboration
roles: Subject, Observer;
model: // this is an abstract type model for the collaboration

// no specific role in the collaboration need “know” any part of the model
// there is some state query on Subject
Subject.state: State;
// there is some set of Observers for each subject
Subject.observers: Set(Observer);

interfaces: // these define the interfaces on each role
// each interface is a list of incoming or outgoing messages
Subject.NormalUse= {change()};
Subject.Administer= {register (Observer), unregister (Observer)}; 
Subject.Notify = {out changed (Subject), queryState()}; 
Observer.Update= {changed(Subject), out queryState()};

protocol:

// synchronous version
forAll s: Subject, forAll o in s.observers
change() { true :- o.changed(s) }
// if s.change has been executed, then o.changed(s) has been done for all observers

// synchronous, with more specific senders of messages i.e. make more design decisions
forAll s: Subject, forAll o in s.observers
s.change() { true :- s->o.changed(s) }
// if s.change is done, then o.changed(s) has been done by s for all observers

// details elided here: when o.changed happens, o->s.queryState must follow

// asynchronous version: differentiates sent vs. reply, uses leadTo for temporal rules
forAll s: Subject, forAll o in s.observers
{ sent (s->reply(s.change()(OK)) 
  // s has completed change request with OK

leadTo // must lead to
sent s->o.changed(s); // s has sent (oneway) messages to all observers

}
}

Decisions made vs. 
deferred

This model specifies roles which must exist; incoming and outgoing messages for the 
interfaces of those roles; queries needed to describe abstract joint state; permitted 
sequences of messages for a certain logical thread of interactions (noting that there 
might be otherwise unrelated logical threads which cause interleaved messages). It 
defers precisely which role is the sender and receiver of that message, and single vs. 
multi-threading servers playing each role.
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OOA/D Diagram This diagram represents the design of a collaboration between objects in different 
roles [Catalysis]. It corresponds quite closely to the notion of “Use-Case” [Jacobsen] 
but establishes semantics to allow refinements such as from joint actions to localized 
actions. Other diagrammatic variants exist in other methods, and looser versions 
appear in OMG documents (e.g. Fig. 10.1 in Transaction Services). The temporal con-
straint itself can also be depicted as a diagram[PSL].

Underlying Semantics A collaboration can be interpreted as a theory containing traits about actions involv-
ing its participants.

In Catalysis, we can specify actions not yet localized to specific receivers, deferring 
decisions about responsibility while still defining the resultant effects. These joint 
actions may affect the states of any of their participants, represented by the ends of the 
action links (on the ellipses). Apart from this, the action specs are just understood as 
traits, as in the single-type case. The temporal constraint is also just interpreted as a 
trait.

This simplistic semantics — just take everything in the collaboration and wrap it up in 
a theory — highlights a property of the traits semantics. For it might be asked, what 
happens about the special operators like leadsTo? Do they not have to be translated in 
some way? How are they interpreted in terms of some deeper model?

The answer lies in the nature of our object model. As it stands, it is not rich enough to 
give meaning to temporal operators; to do so, we would have to augment it to include 
a proper notion of object histories. The beauty of the traits approach is that in order to 
interpret temporal logic, we need only import the appropriate theory about object his-
tories. Any client unaware of this more sophisticated basis can ignore references to it. 

Subject-Observer

Temporal Constraint:
forAll s: Subject, forAll o in s.observers
{ s.change() leadTo s->o.changed(s); }
// if s.change has been executed, then o.changed(s) will be done by s for all observers

Subject

state: State
observers: Set(Observer)

interface NormalUse:
  change();
interface Notify:
  out changed();
  queryState();
interface Admin:
  register();
  unregister();

Observer

interface Update:
  changed();
  outqueryState()

NormalUse

Admin

Notify Update
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This shows that because all the semantics are defined within the alterable traits frame-
work, no future development in specification methods will demand a fundamental 
change in this scheme.

Discussion In addition to illustrating how a powerful construct from OOA/D [Catalysis, Jacob-
sen] and specification [PSL] can be mapped to our underlying semantic basis, we also 
recommend this specific construct for IDL++. By using it, we believe that significant 
portions of Corba services could be made less ambiguous and verbose with no loss of 
either precision or generality.

3.3 Abstraction and Refinement

The need During a development process, abstract models let us commit to certain decisions and 
defer others at various levels of refinement. IDL commits to interface signatures and 
defers implementation of data and methods1. OOA/D methods permit us to defer 
decisions such as distribution of responsibilities, finer-grained interaction dialogs, 
concrete messages and signatures, etc. A clear notion of exactly what decisions have 
been made helps us understand the process of refinement; we can thus define accept-
able and unacceptable refinements i.e. conformance. It also helps define adaptors or 
wrappers required between existing components or models.

Having an underlying semantics in terms of traits gives us a very precise notion of 
refinement: no statements made at a more abstract level may be contradicted in a any 
implementable refinement.

1. IDL, with the CORBA infrastructure, also abstracts language, distribution, etc.

Definitions Refinement. A relation between models. If model A is refined by model R, then any 
component conforming to R will behave according to all valid expectations of a client 
who knows A.

Inheritance. A refinement in which the model R has been defined in terms of model 
A, e.g. an IDL derived interface, or a conjunction of named traits. Any correct imple-
mentation of R is also a correct implementation of A.

Conformance. A refinement in which the model R has been defined separately from 
model A, and conformance has to be established before a correct implementation of R 
can be considered a correct implementation of A. We need a mapping between the 
models, called a “retrieval”, to establish conformance of the form:

R & retrieval => A

IDL++ Inheritance: using IDL++ derived types:

type Circle: Shape { … } // all traits of Shape are conjoined with explicit Circle traits

Conformance: where Circle was defined independently of Shape.

type Circle { // Shape traits are not relevant in this Circle definition
model:

int radius;
Point center;
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actions:
move (Vector v) { :- center == old(center) + v }
resize (int percent) { percent>0 :- radius == old(radius) * percent/100 }

}

Circle is still a valid member of Shape, once we establish the retrieval relation:

refinement Circle -> Shape {
retrieval:
for all c: Circle, Point p, c.covers(p) = |p-center| < radius;
}

Decisions made vs. 
deferred

In this example, defining Circle independently of Shape has the advantage that the 
most convenient model may be used for each of them. Thus, the relevant queries can 
be chosen separately. In general, it allows separately defined specs to be related.

OOA/D Diagram This diagram illustrates the two forms of refinement using Catalysis notation. The 
normal “subtype” version on the left defines a trait with exclusive subtypes:

trait shapeForm ==
(for all s · (s: Circle => s: Shape) & (s: Square => s: Shape) & not (s: Circle & s: Square) )

The conformant “subtype” version on the right uses the “/” to indicate a derived 
refinement relationship between the two types themselves. Its semantics are:

circleAsShape = (forall s · s: Circle & circleShapeRetrieval => s: Shape)

Discussion By formalizing the semantics of a model, it becomes much easier to define refinement 
accurately. We can now guarantee that if any implementation correctly meets its spec-
ification; if that specification is a valid refinement of a more abstract model, then any 
assumptions made based upon the abstract model will not be violated. There are 
numerous other very practical and useful forms of refinement, some of which are 
used in the Catalysis method [Catalysis], including refinement of collaborations, of 
types, and of signatures.

Shape

…

Circle

…

Shape

…

Circle

…

retrieval 
definition

Square

…

form
20 of 27 © 1995 ICON Computing Inc. & Alan Wills 1996/January/2 14:41
Permission granted to copy for non-commercial use, provided all copies include this copyright notice

des 
Refinement is as intuitive as this, though formal details will vary.

des 
The refinement itself is defined as a model.



3.4 Generics

The need A collaborations, like the Subject/Observer shown above, is a typical example of a 
“pattern”. However, such collaborations can appear in a multitude of contexts with 
entirely unrelated sets of object types playing the roles. For example, Subject/
Observer might be Worker/Manager, or Switch/SwitchDisplay. i.e. we can turn it into 
a framework — a generic collaboration that can be instantiated to a specification that 
can be applied to any example. 

OOA/D diagram First let’s generalize the example slightly. Subject is now a parameter, and Observer is 
itself defined as a generic type parameterized by Subject. GetView is an interface by 
which the Observer might be queried by an outside client.

The goal of the collaboration is to maintain its invariant, which says that every subject 
will be correctly presented by all its observers. The query isProjection in Observer tells 
whether self is an accurate presentation of the Subject. The definition of this query 
will vary from one observer to another. But notice that calling update has the effect of 
making it true — how this happens would be up to the designer of the specific 
Observer implementation for the specific isProjection query variant.

Both the collaboration and one of its types are parameterized — which means that the 
traits to which they translate are similarly parameterized. Filling in the arguments 
results in a specific set of traits.

Why would it not be sufficient just to subtype Subject and Observer? Because each 
specialization of Subject must be connected to Observers that will work with that 
type: it would be no good to refine Subject to BankAccount and have RailRoadSwitch-
Display as its observer. They must conform as a collaboration, not individually1.

1. The fact that they might be implemented by subclasses is entirely orthogonal.

Subject-Observer (Subject)

Subject

interface NormalUse:
  
interface Notify:

interface Admin:
  register(o:Observer)

{:– observers == old(observers)+o}
  unregister(o:Observer)

{o:observers :–
 observers==old(observers)–o}

Observer(Subject)

isProjection(Subject): Boolean

interface Update:
  update() 

{ :– isProjection(~observers)}
  

Notify Update

invariant: for_all s:Subject · for_all obs : s.observers · obs.isProjection(s)

observers>

NormalUse

Admin

GetView
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Here is one possible kind of Subject:

Now what is the full set of actions defined on type Switch? From the box called Switch, 
we have a set of traits telling the effect of sending the on and off messages to any 
member of type Switch; and also, from the specialization of Subject-Observer, we are 
told what happens if you send the register and unregister messages to a Switch. So a 
designer implementing a switch would have to satisfy them both — including the link 
to a set of Observers; and the collaboration invariant. Similarly, the designer of any 
Observer(Switch) must meet the specification of update, defined in terms of isProjec-
tion. There may be many variants, each a subtype of Observer(Switch), and each 
defining their own criterion for being a correct projection; for example:

How will the designer of Switch ensure that the collaboration invariant is met? If all he 
knows is the generic collaboration, then there is only one guaranteed way — to call 
the update function on all observers: it is guaranteed by its spec to have the desired 
effect, and we know that any Observer(Switch) – such as SwitchDisplay – will be obliged 
to implement it.

So the Subject-Observer framework defines the common attributes and behavior 
required to make a suitable pair of types work together as a collaboration. 

Collaboration invariants Notice that the invariant belongs to the collaboration, not either of the types. This 
means that as far as anyone outside the collaboration is concerned, it is always true; 
but from within, it may sometimes be false. In particular, it may be false after a change 
has been made to the Subject, but before all the Updates are complete. The invariant 
applies before and after all calls on the NormalUse and Admin interfaces, but not the 
internal Notify and Update interfaces.

SwitchUser Subject-Observer (Switch)

NormalUse

Switch

isOn: Boolean;

interface NormalUse:
on() {:– isOn}
off () {:– isOff}

Admin

SwitchDisplay

isLit: Boolean;
isProjection(s:Switch) == (isLit==s.isOn)

Observer(Switch)
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This shows in our semantics for translation to traits. In the description of invariants 
above (page 13), we said that they were interpreted as conjuncts of the pre and post-
conditions of every operation. That is true for the invariants of a self-contained type; 
but for a collaboration’s invariant, this is done only for the operations visible outside 
the collaboration. If there is any operation used from both within and without the col-
laboration, then we can make two versions of its action spec: one with the invariants 
added pre and post, and one without; in other words, if the invariant is true before-
hand, it will be preserved; if not, the operation will work anyway.

IDL++ (We omit a discussion of an IDL++ variant of this scheme — it is a question of choos-
ing a suitable concrete syntax after the manner of previous sections.)

Discussion Although we have not explicitly shown a translation to traits here — at this level it 
becomes long and tedious — we have obtained a clear understanding of what the 
generic collaborations and their specialization means by considering the translation. 

Another essential aspect of generics is that constraints may be applied to the parame-
ters — for example to constrain a type to have a “<“ operation with suitable proper-
ties. In this system, it can be done by adding to the collaboration invariants to that 
effect, such as:

for_all a,b,c:ParameterType · a < b && b< c ⇒  a<c

This ensures that any supplied argument type must have this property: if it has a con-
tradictory property, it will turn out to be impossible to implement the collaboration. 
(This is similar to the use of the separate “theory” construct in [FOOPS].)

4 Summary to the OMG’s RFI

We end with a summary of how our approach addresses the RFI’s primary points. 
The table below summarizes our reading of the main thrusts of the RFI, and relates 
each of them to the ideas and information presented in this paper. It is recommended 
to read this summary in conjunction with our discussion in Section 1 about the OMG 
needs underlying this RFI.
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i.e. Not all substitutions into a pattern are a valid use of that pattern. 
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ts We provide 4 key features for re-use and interoperability across levels of abstraction, methods and to

• Semantics: the underlying trait semantics can capture different methods; any one of the suggeste
schemes for interoperability may be used, from name-based traits to sophisticated matching

• Composability: workproducts from one method can be composed (using one method’s ‘composit
operator) with workproducts from other methods, with well-defined behaviors in terms of the tr

• Conformance: workproducts are re-used with full confidence in conformance; decisions specified
one level of abstraction will not be contradicted later

• Abstraction and refinement: with generics, collaborations, types, and ‘capsules’, we provide for r
use of and very incremental development, from the level of business models, through architectur
and frameworks, to code, and, in fact, on to maintenance and enhancement
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This point was very unclear to us: is it requesting a description of the process model for a particular 
methodology, or a meta-description of lifecycle models in general? 

Assuming the former, we might describe the levels and workproducts as below. We imply no orderin
all between levels and activities, but we do require formal or informal refinement relations between 
descriptions. Our basic cycle is, recursively, specify an abstract component; design its internal collabo
tions (from the level of business down to code).

• Domain or business models: collaboration model of interacting actors, utilizing abstract actions t
concrete refinements; describes existing business design

• System context: a collaboration model of the “to-be” domain, with the target (changes to) compo
nent(s) as a part of it; design the desired interactions

• System specification: a type model and behavior specification for the target component(s).

• Design: refine external actions to sequence of actions between roles and collaborations within the
system.

Se
m

an
ti

cs
 a

nd
 m

et
a-

m
od

el Our foundation of traits and theories together provide a very strong basis for defining semantics. As 
lined in the beginning of Section 2, everything from the most basic definition of what our model of 
objects is, through modeling constructs layered on it by a specific methodology, to end-user models b
on some (combination of) methodologies, has a well-defined meaning. We outlined the mappings for
some representative OOA/D constructs, and list some other comparisons below. The mappings clear
covered “static” semantics, dynamic and functional semantics, and some syntax in terms of IDL++ a
OOA/D diagrams.
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Summary

There have been two main thrusts to this paper:

• Traits 

— give a pluggable mechanism in which a wide variety of requirements can be 
described in common terms — even down to altering the fundamental object 
model

— provide a structure in which individual requirements can be separated from 
others — for searching and conformance checks

• Requirements can be expressed equally abstractly and precisely

— in an extended IDL, suitable for machine processing of interfaces to compo-
nents in open and component-built systems

— in (soundly-based versions of) diagrammatic OOA/D notations

We have illustrated these principles by giving translations from examples of these 
notations into traits; and by giving an account of how conformance can be checked 
between traits.
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We list below the primary constructs we presented, together with the methods and specification lan-
guages that have a close formal relation, or a loosely defined relation to it. Note that several methods
either due to poorly defined semantics or inadequate understanding on our part, do not map easily.

Construct Formal Match Loose Match

Contracts and “model” 
queries

Syntropy, Cataly-
sis, BON, VDM, 
Larch, Object-Z

Fusion

Collaborations Design Patterns, 
Catalysis, 
OORAM, DisCo, 
PSL, CCS

Syntropy, ROOM, Shlaer&Mellor, Unified Method
Fusion

Abstraction & Refine-
ment

Catalysis, PSL, 
ROOM, VDM, 
Larch

Objectory, Unified Method

Generics Catalysis, Larch, 
Z, VDM

Unified Method

To
ol

 P
ro

je
ct
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ns

Some of the concepts and notations are currently supported by the Protosoft tool. We do not have an
details on concrete interchange facilities, but we have detailed the semantic scheme that should unde
such an interchange. In general, it would consist of:

• Traits by name (perhaps using URLS, optionally reasoning about trait definitions)

• Concrete syntax: e.g. based upon CDIF syntax

• Visual information: this can easily be formalized in terms of traits, including “visual” semantics

RFI 
Issue How it is addressed by this paper
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