
Desmond D’Souza

www.kinetium.com

Architecture in UMLArchitecture in UML

Find The Beef?Find The Beef?

www.catalysis.org 2

The QuestionThe Question
■ Is UML an architecture description language?

■ We have always distinguished …

�Can you do objects in C ?

� Is C an object-oriented language ?

■ We can do some architecture descriptions in UML

�That does not mean it is an ADL

www.catalysis.org 3

Is This an “Architecture”?Is This an “Architecture”?

ButtonButton

SwitchSwitch reactor

ThermometerThermometer ThresholdThreshold

OROR

ThresholdThresholdDifferentiatorDifferentiator

slider

pressed

start

stop

toggled

<<physical>>

position

limit
value in

value

in
gradient

in

out

out
in1

in2

out
AlarmAlarm

in

<<event>>

<<event>>

<<prop>>

<<prop>>
<<prop>>

■ This is an abstract view of the implementation
� It uses the language of properties, events, methods

�… and of connectors between these “connection points”
� It has a mapping to Java code patterns i.e. a refinement

■ This design is an instance of the Java Beans style: design + code
■ These cannot be effectively and precisely described in UML

www.catalysis.org 4

Architecture as View based on StyleArchitecture as View based on Style

Full Implementation
Source Code, Database Definitions,
Modules, Hardware, Distribution, ...

Event / Property /
Method View

Functional
Requirements View

Object / Relational
Mapping View

Concurrency
View

Event / Property /
Method Style ORM Style Concurrency Style

<<refine>>
mapping

<<refine>>
mapping <<refine>>

mapping

<<refine>>
mapping

Func-Req Style

Architecture = an Abstraction or View of the implementation

Architecture Style = Language + Rules (for some viewpoint)
<<instance>

www.catalysis.org 5

Arch Style as Constraint on RefinementArch Style as Constraint on Refinement
■ Style keeps designer from “needless creativity”

�Spectrum of 0% to 100% constraining

■ In general, a style will
�Focus on a viewpoint or set of concerns
�Define a language for expressing a design
�Specify a set of conforming spec / design pairs

■ Three sample data points
�Totally no constraints on design
�Design language but no refinement constraints
�Full translation scheme from spec to design

www.catalysis.org 6

Varying Degree of Generative StyleVarying Degree of Generative Style
■ Architectural styles to keep 2 attributes in sync

�Style 0: “The Cowboy” - do it any way you want

�Style 1: “2 copies + update protocol” construct

�Style 2: “1 copy in shared memory” construct

�Style 3: both Style 1 and Style 2 available

�Style 4: Whenever you have a requirement to
keep 2 attributes in sync with each other, use
the “2 copies + update protocol” design

www.catalysis.org 7

Catalysis - Architecture and Style in UML
at All Levels

Catalysis - Architecture and Style in UML
at All Levels

• Architecture style defined in separate package
• In general, realization refines specification in a

way that conforms to the architecture style
• Style constrains realization and/or refinement

realization

• Range of “generative” options
• Completely ad-hoc (or “creative”)
• Fully defined translation (compiler)
• Some defined rules and constraints

specification
s1, s2, s3, ...

<<refines>>

Architecture Style
(design elements, rules, constraints)

<<instance>>

Architecture Style
(design elements, rules, constraints)

s2

www.catalysis.org 8

Architecture - All Sizes, Scales, DomainsArchitecture - All Sizes, Scales, Domains

■ Use 3-Tier Client Server

■ UI style: do 1-* association with master-slave list box

■ Tiered component packaging: domain object + UI

■ Java Beans: event, property, method, connectors

■ Design patterns: all object creation via factories

■ Coding rules: get / set method names

www.catalysis.org 9

Catalysis Generative Framework - FactoryCatalysis Generative Framework - Factory

Factory

<Abstract>Factory

make<Abstract>(): <Abstract>
post
<Abstract>.new = Set { result }

generated factory class, make methods

<Concrete>Factory

make<Abstract>(): <Concrete>

<Abstract>

<Concrete>

placeholder

www.catalysis.org 10

Catalysis Frameworks - Object-RelationalCatalysis Frameworks - Object-Relational

Supertype Mapping

<Sub>Table <Super>Table

<<pK>> id : <Super>Id<<fK[<Super>Table]>>
super : <Super>Id

<Sub>Table::inv (<Sub>Table - {self}).super->excludes(super)

generates

provided
Sub Super

“precondition” for applying this framework
<<fK>>

<<pK>>

Stereotypes similarly
defined as frameworks

relational

www.catalysis.org 11

SummarySummary
■ Is UML an Architecture Description Language?

�Not quite
�Not designed as composable family of languages

�Particular points to be fixed in UML 2.0
�Extensibility: package, stereotype, pattern, profile
�Refinement: separate and re-relate abstractions
�Fractal: granularity of object, interaction, aspect
�Composition: precisely relating different views
�Components and Component Architectures
�Reliable building blocks: impl, design, specs

www.catalysis.org 12

What could UML [fixed] look like?What could UML [fixed] look like?
Fundamentals

Descriptors Occurences

BehaviorModel
Construction

UML Reverse
Engineering

Statics Dynamics Statics Dynamics

Std UML
f’works

Aggregation
Qualifier
Power type
Use Case

Package and Model Element
Transitive Import
Substitution

Type
Attribute
(Association)
(State)
Action
(Transition)

Instances

Full Semantics

Type Model
Collaboration
Refinement
Frameworks
Architecture
Profile
State Chart
Activity Chart

Language specific profiles

i.e. Catalysis

