
For a UML “Core” – Overview

Desmond DSouza, Kinetium, desmond@kinetium.com

1 Introduction .. 1
2 Basic Packages and Import ... 2
3 Patterns in the “Core” ... 2

3.1 Examples of Patterns .. 2
3.2 Package = Pattern Definition .. 3
3.3 Import + Renaming = Pattern Application.. 3
3.4 Patterns have “Pre-conditions” ... 4
3.5 Identifiers are Parameterized .. 4
3.6 MOF Package Generalization as Special Case of Patterns ... 4

4 Unify Objects and Values... 6
4.1 Objects and Named Links... 6
4.2 Object / Reference / Reified Reference is Fractal... 9
4.3 Attribute Types ... 9

5 Unify Activity and Action .. 10
6 Unify Causality... 10
7 Refinement.. 10
8 Meta-Model Architecture ... 11

8.1 Structure of Meta-Models... 11
9 Interoperability, Model Interchange, and Translation .. 13
10 Fractal Foundation .. 13
11 Composition Foundation .. 14

1 Introduction

These are some issues for the UML 2.0 “core” i.e. some part of the UML infrastructure RFP, and
potentially part of the MOF. The approach here is motivated by some simple observations:

1. Every time we unify two separate concepts in the current UML into one in the 2.0 “core”, we
significantly reduce the combinations that higher level constructs and profiles have to consider.
Consider if the 2.0 core could fully unify objects and values, attributes and associations, states
and attributes, patterns and template classes/ collaborations, activities and … .

2. One good approach would be an architecture in which new constructs can be defined as
translations into core constructs. A good pattern capability would provide this: the abstract
description of the pattern such as subject-observer is the higher-level construct (optionally with
its own concrete or abstract syntax); the mechanism for realizing it with some structure of
inheritance, adaptors, interactions, … is the translation.

3. The basic modeling constructs can then be consolidated to a bare minimum (e.g. the static part
could become just objects, attributes, and static invariants), with other constructs defined as
patterns that translate to this core (state, association, …)

 Page 1 www.kinetium.com

mailto:desmond@kinetium.com

2 Basic Packages and Import

The package is one of the most important constructs. Some core clean-up of packages and imports:

• No hiding of package elements in the core i.e. effectively, all elements are public.

K-1. Different kinds of hiding can be built atop the core by factoring models across
packages (Section 3.6), or by renaming (Section 3.3).

• Package import should be transitive.

K-2. Consider a simple re-factoring operation on a package P1, where some of its
elements are moved to a new common shared package P0, just as we might factor
out parts of a class into a superclass. Packages that import P1 should not be
affected by such a change.

• Every package should be self-contained i.e. every name used in that package should be
adequately defined either within that package, or via one of the packages that it imports.

3 Patterns in the “Core”

3.1 Examples of Patterns

We start with some examples of things that could be described as patterns. Below we use italics to
indicate a variable part of a pattern, and do not show the formal OCL.

1. Association

o Association with roles r1 and r2 (and multiplicities m1 and m2) between C1 and C2

o This translates into an attribute r1 on C1, and attribute r2 on C2, and OCL
constraints on those two attributes for their multiplicities and their ‘inverse’ nature.

2. Aggregation

o An aggregation r1 between C1 and C2 [with your favorite syntax]

o This translates to an association r1 from C1 to C2, constrained to a tree structure,
and with [your favorite variation of] some lifetime or delete dependency.

3. Namespace

o A relationship between a NamingContext and some NamedElements in which the
Context associates a Name with each NamedElement, with a uniqueness rule.

o Note: UML and MOF both mix namespaces with issues of containment and
ownership. This makes it very hard to define some kinds of scope and renamings.

4. Unique

o Attribute a1 of C1 is unique in the context of some association r1 from C0 to C1

 Page 2 www.kinetium.com

o This translates into a simple OCL constraint.

5. Template classes

o Collection C with elements of type T has attributes and operations that refer to T.

6. State

o A state S translates into an attribute S:Boolean

o The structure of state chart translates into a (static) invariant on those attributes e.g.
isOn = not isOff.

7. Java Bean Property

o An attribute A of type T on classifier C can be marked as a <<property>>

o This translates to a getA(): T and setA(t: T) pair of methods

8. Stereotypes

3.2 Package = Pattern Definition

Patterns, in general, involve relationships between model elements (classes, objects, OCL
constraints, interactions, …). The UML package is a container for interrelated model elements.

K-3. A pattern is any set of interrelated model elements defined in a package, some
of whose elements will be substituted when that package is imported into another.
In other words, no new construct is required to define a basic pattern. At the most
we could add an indication for elements earmarked for substitution, but this is not
required in the core; any element is substitutable.

3.3 Import + Renaming = Pattern Application

To apply pattern P to some target elements in package P1 means that P1 imports P, and renames
some of the elements of P to correspond to the target elements. Renamings are associated with
each import. The result in package P1 is that all elements with the same name have their
definitions merged. [Note – the UML really should have dealt with this merging issue already. A
class can be incrementally defined across multiple diagrams. These definitions have to be merged
to produce the resultant definition of that class].

K-4. To apply a pattern to some model elements by substituting those elements for
elements from the pattern definition, the meta-model must properly support
namespaces and renaming. It must also define merging of model fragments.

K-5. Issues like “what is a name” are abstracted by having a Name type with a
sameAs(Name): Boolean operation.

K-6. An element that is not named by a package, or that has been renamed to “”, is
not accessible via that package. This provides a simple way to define different
kinds of hiding rules on top of a simple core.

 Page 3 www.kinetium.com

NameBindingPackage

NameBinding

allNamings = local
ElementNamings
MERGED with imports'
namings

NameBindingPackage

Name

sameAs(Name) : Boolean

+allNamings

0..*0..*

+allNamings

0..*

+localElementNamings 0..*

0..*

0..*

Import

0..*0..*

+parent

0..*
+namings

0..*

+child

Renaming
original : Name
replacement : Name

0..*

+renamings

0..*

self.namings = parent.allNamings
overridden by self.renamings

Figure 1 Basic meta-model for patterns

So an import can refer to names of elements in the importing and imported package. In addition, it
is very useful to extend the idea of import substitutions to not just explicitly named elements, but
also elements that can be accessed from a named element via some traversal of the known meta-
model e.g. the multiplicity of an association, or the entry-point of a method.

3.4 Patterns have “Pre-conditions”

Most patterns are only applicable if the elements that are substituted satisfy certain properties. For
example, the CorbaAttribute pattern may be applicable only to attributes of CorbaInterfaces; or,
the OrderedCollection pattern may only be applicable if the ElementType have an appropriate
definition of ordering. Even the C++ standard template library (STL) is full of such cases.

K-7. The pattern meta-model should permit definition of constraints or
requirements on the substituted elements.

3.5 Identifiers are Parameterized

Patterns are not just about structures of model elements in the UML sense, but also about the
names used to refer to those elements. Names indicate roles in the pattern, hence names themselves
need to be structured terms. This leads to parameterized identifiers e.g. get_<attr> and set_<attr>
could be the structured names of two methods, parameterized by the name of some attribute
<attr>. Hence patterns, when applied, can generate meaningful interrelated names (modulo
internationalization). Name equality needs minor re-definition to handle such structured names.

K-8. Identifiers in patterns can be parameterized by other identifiers.

3.6 MOF Package Generalization as Special Case of Patterns

MOF has a concept of package generalization; however, it is not uniform and makes unnecessary

 Page 4 www.kinetium.com

special restrictions. For example, it allows for package P2 to import P1, and introduce a new
association to P1::A, and to add new OCL constraints. However, it does not allow P2 to add new
attributes, operations, or superclasses to P1::A.

Unfortunately, this is inconsistent. There could be a common association, r, that is needed by
P1::A and P1::B; this commonality should be handled by introducing a superclass of A and B
within package P2. Similarly, adding a new association is no different from adding attributes (the
MOFs current distinction of attribute, association, and reference appears to be motivated by
implementation issues); in fact, a new association may directly introduce derived attributes, such
as a summary value from a 1-N association.

P1
A

B

P2

A B

AB_Super
/ att rX +r

Figure 2 MOF package generalization limitations

Further, an added OCL constraint could well need a definition of a new attribute or operation.
Moreover, constraints are just a textual form of models: if a child package can add new OCL for a
class from a parent package, it can effectively define new attributes and operations on that class
using “def:”, so to be consistent we should permit this in non-text models as well.

This uniform version of package generalization can be handled by correctly doing patterns. All that
package generalization does is implicitly rename each element of P1 to the same name in P2. The
merging of elements from patterns provides package generalization.

 Page 5 www.kinetium.com

This form of package extension could be easily motivated with an example:

K-9. The OCL package provides a definition of collections and numbers. Suppose
we need to extend these definitions e.g. add statistical properties to numbers, or
add more convenient subsequence operators on collections. Creating and naming
subclasses is not the right solution, since our intent is to define new properties of
the same set of objects.

4 Unify Objects and Values

4.1 Objects and Named Links

Objects are distinguishable individuals in some world. Objects can include people, components,
numbers, dates, classes, procedure activations,
booleans. We consider objects to have labeled
directed links to others, giving a uniform graph-like
conceptual view of the state of a world that includes
persons, dates, numbers, strings, and booleans. Some
objects always existed, some come and go
dynamically. Some links always existed, some are
immutable, some change with time. Some links and
objects would be highly optimized in an
implementation e.g. a 2’s complement encoding of links to integers enables very efficient
traversal of the immutable links between integers, without ever explicitly creating an integer
‘object’. Mutable vs. immutable can be problem dependent.

joeBrown:
Person

joesmith:
Person

"joe":
String

3:
Integer

firstName

age

firstName

stringLength

true:
Boolean

alive

K-10. Products, numbers, classes, times, … all individuals are modeled uniformly as
objects with named links to others in a platform independent way. The relevant
properties and specification styles varies between immutable and mutable objects.

The snapshot is translatable to equivalent logical statements, where the identifiers joeSmith,
joeBrown are just variables (named links to objects) of type Person:

joeSmith, joeBrown: Person;
joeSmith.age = 3; // 3 is a (constant) name for the object
joeBrown.alive = true;

The core has a built-in concept of object identity, without separate value types. But aren’t equality
checks different from identity checks? A String value type might have equal defined as the
same sequence of characters. Modeled as an object, String simply has an invariant constraint
saying strings can be equal only if they have the same identity (and mutative operations are
replaced by corresponding non-mutative ones)1:

d1.equals(d2) implies d1 = d2

1 This is specification object identity and can have different implementations. For example, Java == or equal are
needed depending on whether specification objects are implemented as shared code objects or as duplicate copies.
Java strings, implemented as duplicate copies compared with equal, could have been implemented with a smart
constructor that ensured a single shared copy of any string.

 Page 6 www.kinetium.com

Thus, value equality is replaced by object identity with an identity constraint; all individuals
become objects. Thus, there is really no difference behind these three statements:

• No two people can have the same social security number

• No two drivers licenses can have the same state as well as the same serial number

• No two dates can have the same day, same month, and same year.

joeBrown:
Person

joesmith:
Person

123-45-678
9: SSN

socialSecNum

socialSecNum d1: Drivers
License

d2: Drivers
License

s: State

n: Serial
Numser#

state

ser#

state

d1: Date

d2: Date

day:
Number

month:
Number

year:
Number

Figure 3 Uniform Treatment of Identity Constraints

Additional problem-specific similarity checks may still be needed; these are distinct from identity
or equality checks.

K-11. ‘Value types’ are modeled as
objects with an inequality constraint
on any two distinct objects.

www.kinetium.

N-Ary-Assoc-Object
role1 : C1
role2 : C2
role3 : C3
rolen : Cn

com

K-12. There is no need for anything
like a “composite identity” e.g. it is
sometimes suggested that the
identity of the association instance is
the composition of the identities of the linked objects. If you need to refer to
tuples as objects, go right ahead: a tuple has an identity just like any regular ol’
object, and an additional constraint saying no two distinct tuples (different
identities) can have the same linked objects.

joeBrown:
Person

joesmith:
Person

123-45-678
9: SSNsocialSecNum

socialSecNum

This applies to the meta-models as well. e.g. UML defines an N-ary association as: “Each instance
of the association is an n-tuple of values from the respective classifier. The multiplicity on a role
represents the potential number of instance tuples in the association when the other N-1 values are
fixed.” The ‘n-tuple of values’ is a ordinary object type with an identity constraint:

context N-Ary-Assoc-Object
 N-Ary-Assoc-Object->forAll (t |
 t.r1 = self.r1 & -- identity checks

 Page 7

 t.r2 = self.r2 &
 ...
 t.rn = self.rn
 implies t = self) – identity constraint

Platform issues like Corba call-by-value, besides being separable into a distinct meta-model, can
be mapped directly to call-by-reference to a copy.

K-1. Platform specific distinctions of data type, parameter passing conventions,
exceptions, etc. are mapped to the core in separate meta-models or profiles.

Common questions:

• But you do not pass value types around by reference. At the conceptual level you have to
have a notion of “individuals”, whether persons, numbers, or dates. All object modeling,
and for that matter all predicate logic, is based on this. Thus, there is a conceptual notion of
object identity – called identity by the object crowd, and equality by others – that is the
basis of writing specifications that refers to individuals. Now, you have to map your
conceptual notion of individuals and identity to your implementation. Sometimes it is
appropriate to use implementation references (e.g. pointers) to indicate conceptual identity;
at other times it is better to have a “fat reference” i.e. encoded into the reference itself is
some information about the thing referred to.

Thus, passing around a copy of [day, month, year] for dates is no more than passing around
a fat encoding that refers to the conceptual date; determining if two of these refer to the
same date object, of course, means comparing the relevant parts of that encoding.

Similarly, a 2’s complement encoding of a reference to the integer 5 provides very efficient
traversal of the immutable next and previous links that every integer has. So, conceptually
every integer has attributes next and previous, and 2’s complement is just a very efficient
and systematic encoding of those references. This is very similar to a common
programming optimization of references to objects: if you know from domain knowledge
that you have a small fixed numbers of objects, and that you need a next for each of those
objects, you can represent those objects in an array, and encode the representation and
traversal of next into array indexes / memory addresses.

• But Corba does have value types. Absolutely. And Corba’s notion of values should be
defined in the Corba profile, and not in the UML or MOF core. Also, such value types and
call-by-value rules are can be modeled as call-by-reference to a copy. This also makes
explicit the definition of copy that is used, where some platforms (C++) will truncate
information when calling by value, and others (Java RMI) will pass through a complete
copy, including polymorphic behaviors.

• But the number 5 does not understand the “+” message. The decision of how to model
behaviors (only single-receiver localized operations, or more general joint-actions as may
be more suited for use-cases and business actions and events) is separate from uniformly
treating all individuals as objects with identity.

• But this will complicate things like enumeration types. Actually, it makes it more uniform.
Most types define a set of objects that are members of that type by specifying their

 Page 8 www.kinetium.com

properties. An enumeration type simply lists, and names, its members directly. Thus an
enumeration type is just a set of names for its member objects, with the constraint that each
name denotes a distinct object. This also enables us to define richer sets of objects as
enumerations.

4.2 Object / Reference / Reified Reference is Fractal

Just as actions get reified, so do object references. This includes parameters and stored references –
a virtual reference becomes a particular new “name” value type with some name resolver. See
ODP engineering viewpoints.

4.3 Attribute Types

Attribute types should include sets, sequences, and maps. To motivate this, consider why any of
the following should be modeled as operations instead of as attributes:

• car.wheel1, … car.wheel4

• Cars have 4 ordered wheels: car.wheels.first

• Trucks have a whole bunch of ordered wheels: trailerTruck.wheel (n)

• The price of a product: product.price

• The base price and incremental unit price of a product: product.base_price,
product.incremental_price

• The price of some quantity of a product: product.priceFor (quantity)

UML already permits specification of multiplicity and ordered constraints on attributes.
Presumably the elements in an ordered attribute set can be referred to by their position in that order
e.g. In other words, if we allow attributes to have any defined type, including sets, maps, etc., we
get better abstractions of object state. Almost all specification languages provide similar facilities
to define and structure object state.

Common questions:

• But we already have operations for doing this. If attributes are supposed to abstract the
state of an object, there is no real reason for switching to operations just because we need a
better abstraction of object state.

This also simplifies the meta-model. If we separately specify the meta-model for statics
from that for dynamics, then the static meta-model does not need operations at all.

• Post-conditions vs. invariants. Invariants hold at “all times”. State relationships hold at all
times.

• Style of specifying queries. Query functions become trivial; all complexity is in the state
invariants. Operation specs become greatly simplified with convenience attributes,
especially convenience parameterized Boolean queries.

 Page 9 www.kinetium.com

5 Unify Activity and Action

State machines, operations, actions, and activity diagrams unified with Action.

6 Unify Causality

Key question:

7 Refinement

One of the most visible demands placed on the UML by the new MDA initiative is a proper
treatment of refinement. Refinement is a relationship between two models, one of which is strictly
more detailed than the other and which maintains the guarantees made by the other. The meta-
model for refinement needs to be very close to the “core” of UML, since many other things will
need to be related to refinement.

Refinement
(mapping)

Zoom in/out of use-case (user task)
(abstract action or detailed dialog)

Zoom in/out of objects
(external or internal view, including software)

Client

Company
buy course

Client

Company

schedule

pay

deliver

pay
Client

Company

schedule

deliver

Client

Companyschedule

pay

deliver

SW System

Components

• Fractal zoom in/out with equal sharpness

Refinement
(mapping)

Figure 4 Illustration of refinement relations

Doing refinement properly will unify a core concept behind many disconnected constructs:

• System, subsystem, model – system and subsystem are just objects, possibly at different
levels of abstraction.

• Use case, action, activity, … these are all different abstractions of behavior or interactions.

• Interface, type, and class – there is again a realization / abstraction relation between these.

The general structure of the refinement relation is shown below. The note marked “full model of
refinement” could be a complete model, including classes, attributes, associations, interactions,
state charts, activity diagrams, … that establish that the concrete faithfully meets the guarantees of

 Page 10 www.kinetium.com

the abstract. The kinds of models most that are useful depend on the kind of refinement. The rigor
is variable: the refinement model could stubbed out with just “Because Joe says it will work”.

abstraction

realization

refinement

Abs
<<interface>>

interface and class is
used purely as an
example for illustration.

concrete

Abs
<<interface>>

concrete

full model of
refinement
+
justification of
design choices

8 Meta-Model Architecture

8.1 Structure of Meta-Models

Given a package from your favorite tool, does the familiar box labeled
Customer represent a UML class? A MOF class? Does the <<db2>> on
the box mean IBM’s definition of the <<db2>> stereotype? Someone
else’s <<db2>>? Does the <<…>> even mean UML stereotype?

Customer
name : String

<<db2>>

It is nice to treat a package as a collection of model elements, provided
every language construct used is unambiguously identified with a
definition of that construct.

K-2. A language or meta-model is defined in a package that can include the rules of
concrete syntax, corresponding abstract syntax, and semantics of each language
construct. That package can use all the usual package structuring facilities. A
model – i.e. an instance of that meta-model – must import the language definition
package so every language construct used in the model is identified with its
definition in the meta-model.

 Page 11 www.kinetium.com

Customer =?X
name = ?a

<<db2>>

UML B'Blues Profile

concrete syntax

abstract syntax

semantics

?X
?a

"<< ?S >>"

stereotype
structure

translation to other abstract syntax
(or relation to semantic domain)

<<db2>> means ...

<<cics>> means ...

?X: Class
?a: Attribute

Figure 5. Language Definition and Usage

Figure 5 sketches how UML concrete syntax (a class box, or a stereotype), its mapping to abstract
syntax (a class and its attribute, or the inheritance structure for a stereotype), its semantics
(semantics can be defined by translating, in the form of “patterns”, a higher-level construct into a
lower-level constructs, provided the lower level one has its semantics defined in some form), and
particular profiles with their stereotypes, are all used by a model. The basic idea is quite similar to
programming. When you write a source file in C++, you must (a) indicate clearly that it is C++,
and sometimes even indicate which version of the language or compiler can handle it ☺; and (b)
#include any header files that define macros that you use. Facilities for packages and I mports
leads to a structure of both incremental language definitions (meta-models) and language uses
(models), as shown in the figure below.

 Page 12 www.kinetium.com

9 Interoperability, Model Interchange, and Translation

Interoperability should not be reduced to a least-common-denominator. Instead, it should allow a
model expressed in a given modeling language or dialect to be at least partially understood by a
machine that did not understand that entire language or dialect. For example, a design-time search
for components that meet a certain real-time spec, in a tool that did not fully understand the real-
time profile, should still retrieve candidates that appear to meet all other search criteria. Similarly,
a run-time agent that understands attributes but not state machines, when faced with a state-
machine model, should be able to reason with the attribute-equivalents of those states. This
requires that language definitions themselves be structured to share partial language definitions
and extend or translate into other languages. So we could:

• Introduce state constructs and an access API for those that understood states

• Translate into attributes, offering access through the ‘attribute’ API for less evolved clients

• Include a generic reflective access, of course

10 Fractal Foundation

• Object is any granularity

o Hence multi-threaded, multiple interfaces, etc.

 Page 13 www.kinetium.com

o Interface relationships within object

o Object refinement

• Action is any granularity

o Concurrency across actions

o Long-lived actions

o Action refinement

11 Composition Foundation

• Components x, y; do not have to be all of the same type (so can define use-case, record-
type, …)

o ports xp1, xp2, yp1, … abstract the internals of x, y

• Connectors C1, C2

o Define the meaning of compositions

• Assembly X

o Can itself be a different type

o Can have an independent external specification;

• in which case multiple compositions as alternative refinements

 Page 14 www.kinetium.com

	Introduction
	Basic Packages and Import
	Patterns in the “Core”
	Examples of Patterns
	Package = Pattern Definition
	Import + Renaming = Pattern Application
	Patterns have “Pre-conditions”
	Identifiers are Parameterized
	MOF Package Generalization as Special Case of Patterns

	Unify Objects and Values
	Objects and Named Links
	Object / Reference / Reified Reference is Fractal
	Attribute Types

	Unify Activity and Action
	Unify Causality
	Refinement
	Meta-Model Architecture
	Structure of Meta-Models

	Interoperability, Model Interchange, and Translation
	Fractal Foundation
	Composition Foundation

